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Introduction

The purpose of this talk is to introduce the basic setting and con-
structions for stable motivic homotopy theory. We will also talk
about some basic computational phenomina regarding motivic Steen-
rod algebra and motivic Adams spectral sequence.
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Examples of schemes

We first recall the definition of schemes and look at several examples.

Let R be a commutative ring, the spectrum Spec(R) of R is defined
as follows:

Underlying set: the set of prime ideals of R

Topology: {D(f )}f ∈R forms a basis of open sets for the Zariski
topology on Spec(A). Here D(f ) ⊂ Spec(R) is the set of primes
not containing f.

Sheaf: OSpec(R) is a sheaf of rings with OSpec(R)(D(f )) = Rf .

In particular, OSpec(R)(Spec(R)) = OSpec(R)(D(1)) = R1 = R ,
where 1 is the unit in R . Besides, by definition of sheaves, the
value of a sheaf on empty set is always the terminal object. In our
situation, we get OSpec(R)(∅) = 0, the zero ring.
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Examples of schemes

An affine scheme is a locally ringed space isomorphic to Spec(R) for
some ring R. A scheme is a locally ringed space with the property that
every point has an open neighbourhood which is an affine scheme.

For simplicity, in this talk we will always work with field coefficient
k = C, though similar strategy also works for other fields. We usually
let An

C denote the spectrum of the polynomial ring C[x1, ..., xn].
Example 1: Note any field has only one prime ideal (0). Spec C is
a one point space with OSpec C(Spec C) = C.
Example 2: A1

C := Spec C[x ]. The prime ideals of C[x ] are (0)
and (x − a), where a ∈ C. We can mostly picture A1

C as C: the
point (x − a) we will correspond to a ∈ C. We picture the point (0)
somewhere on the complex line, but nowhere in particular.
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Examples of schemes

Example 3: The scheme A1
C − 0 is A1

C restricted to the open sub-
space Spec C[x ]− (x−0) = D(x). We have OA1

C
(D(x)) = C[x ]x =

C[x , 1/x ]. Indeed, one can show A1
C − 0 = Spec(C[x , 1/x ]).

Example 4: Now we glue together two copies of the affine line
A1

C. Let X = Spec C[t], and Y = Spec C[u]. Let U = D(t) =
Spec C[t, 1/t] ⊂ X and V = D(u) = Spec C[u, 1/u] ⊂ Y . We
will glue X and Y together along the subspaces U and V. Consider
the isomorphism U ∼= V via the isomorphism C[t, 1/t] ∼= C[u, 1/u]
given by t ↔ 1/u. The resulting scheme is called the projective line
over the field C, and is denoted P1

C. The scheme P1
C is not affine.
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Smash product of pointed C-spaces

Note Id : Spec(C) → Spec(C) is a terminal object in the category
of C-schemes (schemes over Spec(C)). We regard Id : Spec(C)→
Spec(C) as a C-space, still call it Spec(C), via Yoneda embedding.

If we write out the details, Spec(C) is a functor (Sm/C)op → sSet
sending M 7→ HomSm/C(M , Spec(C)) = ∗
A pointed C-space consists of a C-space X together with a map
Spec(k) → X . Let Spc∗(C) denote the category of pointed C-
spaces. If X is a C-space, let X+ denote the canonically pointed
space X

∐
Spec(k).

Let X ,Y be pointed C-spaces. Then their smash product X ∧ Y is
defined as the pointed C-space associated to the functor

M → X (M) ∧ Y (M)

We can see Spec(C)+ is a unit for the smash product.
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Smash product of pointed C-spaces
One of the features of motivic homotopy theory is that it admits a
bigraded family of spheres, Sm,n.

Here S1,0 is the simplicial set S1 (pointed by its unique 0-simplex)
and S1,1 := A1

C − 0 (pointed by 1). The sphere Sm+n,n is then the
smash product of m copies of S1,0 and n copies of S1,1.
Recall we have a pushout square

A1
C − 0 //

��

A1
C

��
A1

C
// P1

C

Since A1
C is motivicly contractible, we get P1

C ∼ Σ(A1
C− 0) = S1,0∧

S1,1 = S2,1. Here, note in the functor category colimits are computed
levelwise. Hence suspension is in the simplicial direction.
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Stable motivic homotopy category

A C-spectrum is a sequence of pointed C-spaces X = (Xn)n∈N
equipped with pointed structure maps σ : P1

C ∧ Xn → Xn+1.

A map of C-spectra f : X → Y is a sequence of maps Xn → Yn

commuting with structure maps in the obvious way:

P1
C ∧ Xn

σ //

P1
C∧f
��

Xn+1

f

��
P1
C ∧ Yn

σ // Yn+1

The resulting category of C-spectra is denoted Spt(C).
The sphere spectrum is S = (S0,0, S2,1, · · · ).
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Stable motivic homotopy category

For m, n ∈ Z, X ∈ Spt(C) and M ∈ Sm/C, define πm,nX (M) to be
the colimit of the sequence

[Sm,n∧M+,X0]→ [Sm+2,n+1∧M+,X1]→ [Sm+4,n+2∧M+,X2]→ · · ·

where M+ denotes M (regarded as a C-space) with a disjoint base-
point and [−,−] = HomH(C)(−,−) denotes motivic homotopy classes
of maps. This makes πm,nX into a presheaf on Sm/C called the
presheaf of stable motivic homotopy groups of X .

A map X → Y in Spt(C) is a stable equivalence iff it induces
isomorphisms of presheaves πm,nX → πm,nY for all m, n ∈ Z.
Jardine shows that Spt(C) has a simplicial model category structure
where the weak equivalences are defined to be stable equivalences.
The homotopy category of Spt(C) is denoted by SH(C).
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Stable motivic homotopy groups

As a convention of notations, we often denote the homotopy group
πm,nX (SpecC) by just πm,nX .

The main known results for πm,nS are:
1. (Morel) πm,nS = 0 if m < n.
2. (Morel) πn,nS = KMW

−n C, where KMW
∗ C is the Milnor-Witt K-

theory of C.
3. (Levine) πC

m,0S = πmS. Moreover, there is a fully faithful em-
bedding functor c : SH → SH(C) from classical stable homotopy
category to motivic stable homotopy category, derived from the con-
stant presheaf functor from pointed spaces to presheaves of pointed
spaces over Sm/C.
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Geometric realization

Let X ∈ Sm/C be a C-scheme. We have a structure map X →
Spec(C). A C-valued point of X is a map Spec(C) → X making
the composite Spec(C) → X → Spec(C) equal to identity. One
writes X (C) for the set of C-points of X .

For example, consider X = An
C = Spec(C[x1, ..., xn]). A C-valued

point of X corresponds to a map C[x1, ..., xn] → C making C →
C[x1, ..., xn]→ C = id which again corresponds to n-tuples of com-
plex numbers.
The set X (C) can be turned into a topological space by giving it
the analytic topology, which is locally induced from the topology
of the complex numbers Cn. In particular, we have An

C(C) ∼ Cn,
(A1

C − 0)(C) ∼ C1 − 0 ∼ S1.
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Geometric realization

The process of taking C-valued points derive a functor RC from the
motivic stable homotopy category to the classical stable homotopy
category.

This functor RC is uniquely determined (up to homotopy) by the
following properties:
1. it preserves weak equivalences
2. it preserves homotopy colimits
3. it sends the motivic suspension spectrum of a scheme X to the
ordinary suspension spectrum of its complex-valued points X (C).
Moreover, the composition RC ◦ c : SH → SH(C)→ SH is identity.
In the following, if X is a motivic spectrum, we will also let X (C)
denote its topological realization RC(X ).
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Motivic cohomology

Given a C-spectrum E and smooth C-scheme U , define the (m, n)-th
E -cohomology of U to be

Em,n(U) = [U+,Σ
m,nE ]

where Σm,n is the (m, n)-th suspension functor Sm,n ∧− on Spt(C).

The (m, n)-th E -homology of U is

Em,n(U) = [Sm,n,E ∧ U+]

Similarly, for a C-spectrum X , define

Em,n(X ) = [X ,Σm,nE ]

Em,n(X ) = [Sm,n,E ∧ X ] = πm,n(E ∧ X )

When evaluated on the sphere spectrum S, we often write Em,n :=
Em,n(S),Em,n := Em,n(S).
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Motivic cohomology

Motivic cohomology with integer coefficients is represented in SH(C)
by a C-spectrum HZmot. Motivic cohomology with mod p coeffi-
cients is represented in SH(C) by a C-spectrum HFmot

p .

In the following, we fix an odd prime p and still work over C. We
often abbreviate HFmot

p just as H .
In this setting, we have

H∗,∗ = H∗,∗(S) = Fp[τ ]

where τ is in bidegree (0, 1).

H∗,∗ = H∗,∗(S) = Fp[τ̃ ]

where τ̃ is the dual of τ with bidegree (0, -1). However, we often
also write τ̃ as τ .
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Motivic cohomology

One can construct bistable cohomological operations:

P i : H∗,∗(X )→ H∗+2i(p−1),∗+i(p−1)(X )

where P0 = Id and Pn = 0 if n < 0.

We denote by β the Bockstein homomorphism

β : H∗,∗(X )→ H∗+1,∗(X )

H∗,∗ = Fp[τ ] is concentrated entirely in topological degree 0. It
follows that the cohomological operations (other than the identity)
act trivially on H∗,∗ for dimension reasons.
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Motivic cohomology

We also have the analogous construction of motivic Steenrod algebra
A∗,∗ = H∗,∗(H) as well as its dual A∗,∗ = H∗,∗(H).

The (graded commutative with respect to the first grading) algebra
A∗,∗ over H∗,∗ is canonically isomorphic to the graded commuta-
tive algebra with generators ξi ∈ A2pi−2,pi−1, τi ∈ A2pi−1,pi−1 and
relations ξ0 = 1, τ 2i = 0. In other words,

A∗,∗ = Fp[τ ]⊗ Fp(ξ1, ξ2, · · · )⊗ E (τ0, τ1, · · · )

where τ has degree (0, -1).
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Motivic Adams spectral sequence

Starting with the motivic sphere spectrum S, let H denote HFmot
p ,

let H̄ be the homotopy fiber of S→ H . We can inductively construct
an Adams resolution

X0 = S

��

X1 = H̄

��

oo · · ·oo

W0 = H ∧ X0 = H W1 = H ∧ X1

Here Xs = H̄∧s ,Ws = H ∧ Xs = H ∧ H̄∧s .
The fiber sequence Xs+1 → Xs → Ws is induced by smashing H̄ →
S→ H with Xs .
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Motivic Adams spectral sequence

This gives the motivic Adams spectral sequence and its E2-term is

Ext
s,(t+s,u)
A∗,∗

(Fp[τ ],Fp[τ ])

Here s is the homological degree, and (t + s, u) is the internal bide-
gree. Recall that t + s corresponds to the usual topological grading
in the classical Steenrod algebra, and u is the motivic weight. Some-
times we also refer to t as the stem and s as the Adams filtration.
Motivic Adams spectral sequence converges strongly to the bigraded
homotopy groups πt,u(S∧H), where S∧H is the H completion of S.
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Motivic Adams spectral sequence

Applying the topological realization functor to our Adams resolution,
we obtain the classical Adams resolution. Topological realization
gives natural maps πa,b(X ) → πa(X (C)) for any motivic spectrum

X . This gives a map of spectral sequences E
s,(t+s,u)
r → E s,t+s

r .
Now we have commutative squares

E
s,(t+s,u)
r

dr
��

// E s,t+s
r

dr
��

E
s+r ,(t+s+r−1,u)
r

// E s+r ,t+s+r−1
r
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Motivic Adams spectral sequence

There are maps of spectral sequences:

motivic Adams for S0,0

tt ((
motivic Adams for Cτ Adams for S0

classical algebraic Novikov
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