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Introduction

The purpose of this talk is to introduce the categorical setting for
unstable motivic homotopy theory.

Our goal is to endow the category of schemes with a homotopy
theory. Roughly speaking, the construction can be summarized as
four steps, starting with some category C of schemes:

Cocomplete it by taking presheaves on it

Extend this to simplicial presheaves to add a homotopy theory

Endow C with a Grothendieck topology and localize with respect
to the geometric colimits

Choose a reasonable interval in C, and force it to homotopically
behave like one

The output of this machinery is the unstable motivic category.

Yu Zhang (NKU) Motivic Homotopy Theory - part 4 June 4, 2021 2 / 17



Introduction

The purpose of this talk is to introduce the categorical setting for
unstable motivic homotopy theory.
Our goal is to endow the category of schemes with a homotopy
theory. Roughly speaking, the construction can be summarized as
four steps, starting with some category C of schemes:

Cocomplete it by taking presheaves on it

Extend this to simplicial presheaves to add a homotopy theory

Endow C with a Grothendieck topology and localize with respect
to the geometric colimits

Choose a reasonable interval in C, and force it to homotopically
behave like one

The output of this machinery is the unstable motivic category.

Yu Zhang (NKU) Motivic Homotopy Theory - part 4 June 4, 2021 2 / 17



Introduction

The purpose of this talk is to introduce the categorical setting for
unstable motivic homotopy theory.
Our goal is to endow the category of schemes with a homotopy
theory. Roughly speaking, the construction can be summarized as
four steps, starting with some category C of schemes:

Cocomplete it by taking presheaves on it

Extend this to simplicial presheaves to add a homotopy theory

Endow C with a Grothendieck topology and localize with respect
to the geometric colimits

Choose a reasonable interval in C, and force it to homotopically
behave like one

The output of this machinery is the unstable motivic category.

Yu Zhang (NKU) Motivic Homotopy Theory - part 4 June 4, 2021 2 / 17



Introduction

The purpose of this talk is to introduce the categorical setting for
unstable motivic homotopy theory.
Our goal is to endow the category of schemes with a homotopy
theory. Roughly speaking, the construction can be summarized as
four steps, starting with some category C of schemes:

Cocomplete it by taking presheaves on it

Extend this to simplicial presheaves to add a homotopy theory

Endow C with a Grothendieck topology and localize with respect
to the geometric colimits

Choose a reasonable interval in C, and force it to homotopically
behave like one

The output of this machinery is the unstable motivic category.

Yu Zhang (NKU) Motivic Homotopy Theory - part 4 June 4, 2021 2 / 17



Introduction

The purpose of this talk is to introduce the categorical setting for
unstable motivic homotopy theory.
Our goal is to endow the category of schemes with a homotopy
theory. Roughly speaking, the construction can be summarized as
four steps, starting with some category C of schemes:

Cocomplete it by taking presheaves on it

Extend this to simplicial presheaves to add a homotopy theory

Endow C with a Grothendieck topology and localize with respect
to the geometric colimits

Choose a reasonable interval in C, and force it to homotopically
behave like one

The output of this machinery is the unstable motivic category.

Yu Zhang (NKU) Motivic Homotopy Theory - part 4 June 4, 2021 2 / 17



Introduction

The purpose of this talk is to introduce the categorical setting for
unstable motivic homotopy theory.
Our goal is to endow the category of schemes with a homotopy
theory. Roughly speaking, the construction can be summarized as
four steps, starting with some category C of schemes:

Cocomplete it by taking presheaves on it

Extend this to simplicial presheaves to add a homotopy theory

Endow C with a Grothendieck topology and localize with respect
to the geometric colimits

Choose a reasonable interval in C, and force it to homotopically
behave like one

The output of this machinery is the unstable motivic category.

Yu Zhang (NKU) Motivic Homotopy Theory - part 4 June 4, 2021 2 / 17



Introduction

The purpose of this talk is to introduce the categorical setting for
unstable motivic homotopy theory.
Our goal is to endow the category of schemes with a homotopy
theory. Roughly speaking, the construction can be summarized as
four steps, starting with some category C of schemes:

Cocomplete it by taking presheaves on it

Extend this to simplicial presheaves to add a homotopy theory

Endow C with a Grothendieck topology and localize with respect
to the geometric colimits

Choose a reasonable interval in C, and force it to homotopically
behave like one

The output of this machinery is the unstable motivic category.

Yu Zhang (NKU) Motivic Homotopy Theory - part 4 June 4, 2021 2 / 17



Step 0: category of schemes

In algebraic geometry, one often consider schemes over a fixed field
k , which are also called k-schemes. A k-scheme X is a scheme X
together with a map of schemes X → Spec(k).

Let X be a scheme over k , we say X is of finite type if X is covered
by finitely many affine open sets Spec(A) where each A is finitely
generated as a k-algebra.
We say X is smooth if each point of X has an open neighborhood
which is a smooth affine scheme of some dimension over k . Smooth
schemes play the role in algebraic geometry of manifolds in topology.
We let Sm/k denote the category of smooth schemes of finite type
over k . Our goal is to set up a homotopy theory for these schemes.
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Step 1: embed into category of presheaves

The first problem coming across is that the category Sm/k is far
from being complete and cocomplete in the categorical sense. To
solve the problem, we need to add in all necessary limits and colimits.
There is a general method for this.

Let C be a small category. There is a canonical functor

r : C → Funct(C op, Set)

called the Yoneda embedding, which sends any object A ∈ C to the
representable presheaf rA ∈ Funct(C op, Set) defined as

HomC (−,A) : C op → Set

D 7→ HomC (D,A)
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Step 1: embed into category of presheaves

As in any category of functors, the (co)limits in Funct(C op, Set)
can be computed object-wise. This means that Funct(C op, Set) is
both complete and cocomplete, since Set is. Moreover, this free
cocompletion construction is universal:

Any functor F : C → D where D is cocomplete can be factored
uniquely up to unique isomorphism through a colimit-preserving func-
tor, as in the diagram

C r //

F
&&

Funct(C op, Set)

Re
��
D

In our case, take C = Sm/k , our first step is to embed Sm/k into
the category of presheaves Funct((Sm/k)op, Set).
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Step 2: category of simplicial presheaves

The next problem is, Funct((Sm/k)op, Set) is not a suitable place for
doing homotopy theory. The reason is basically that sets are discrete
so they don’t have interesting homotopy behaviors.

However, we have seen that the category sSet of simplicial sets has
a nice model structure. Moreover, the homotopy theory of simplicial
sets is equivalent to the homotopy theory of CW complexes.
Hence we further embed Funct((Sm/k)op, Set) into the category
of simplicial presheaves Funct((Sm/k)op, sSet) by regarding sets as
constant simplicial sets.

γ : Sm/k → Funct((Sm/k)op, Set)→ Funct((Sm/k)op, sSet)

As any category of functors, Funct((Sm/k)op, sSet) inherits most of
the structure of the target category sSet.
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Step 2: category of simplicial presheaves

Let C be a small category. There is a simplicial model structure on
Funct(C op, sSet), called the global projective model structure such
that a map T : X ⇒ Y is a

weak equivalence, if TA : X (A)→ Y (A) is a weak equivalence
of simplicial sets for all objects A ∈ C

fibration, if TA : X (A) → Y (A) is a fibration of simplicial sets
for all objects A ∈ C

cofibration, if T has left lifting property with respect to all
acyclic fibrations.
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Step 2: category of simplicial presheaves

The global projective model structure on Funct(C op, sSet) is the
universal model category built from C in the following sense:

Any functor F : C → M into a model category M can be ’factored
through’ Funct(C op, sSet) in the sense that there is a left Quillen
functor Re : Funct(C op, sSet) → M and a natural pointwise weak
equivalence η : Re ◦ γ ⇒ F as in the diagram

C
γ //

F
''

Funct(C op, sSet)

Re
��
M

To simplify notation, we denote Spc(k) := Funct((Sm/k)op, sSet)
and call it the category of k-spaces.
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Step 3: localize to have correct geometry

Although the global projective model structure is universal, it doesn’t
give us the correct homotopy theory we want to work with.

One reason is the embedding construction doesn’t take account of
the colimits present in Sm/k , in the sense that the embedding

γ : Sm/k → Funct((Sm/k)op, sSet)

does not commute with colimits, it just formally adds them.
Thus, we need to add in more weak equivalences to the model struc-
ture. This is similar to the generating a free group, then quotienting
out equivalence relations construction.
There is a formal process for add weak equivalences called Bousfield
localization.
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Bousfield localization

Let M be a simplicial model category with (derived) simplicial map-
ping spaces Map(−,−). Let S be a class of morphisms in M .

An object K ∈ M is said to be S-local if it is fibrant in M and if for

any morphism A
f−→ B ∈ S , the induced map of mapping spaces

f ∗ : Map(B ,K )
∼−→ Map(A,K ) ∈ sSet

is a weak equivalence of simplicial sets.
A morphism X

g−→ Y ∈ Mor(M) is said to be an S-local equivalence
if for every S-local object K, the induced map of mapping spaces

g ∗ : Map(Y ,K )
∼−→ Map(X ,K ) ∈ sSet

is a weak equivalence of simplicial sets.
In particular, weak equivalences in M and maps in S are all S-local
equivalences.
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Bousfield localization

A (left) Bousfield localization of M with respect to S is another
model structure on M , denoted by LSM , where

the cofibrations are the same as in M

the weak equivalences are the S-local equivalences

the fibrations are the morphisms with the right lifting property
with respect to all cofibrations that are also S-local equivalences

This definition does not guarantee that LSM exists. Even though we
can define the three classes of morphisms in M , they may not satisfy
the five axioms of a model category.
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Grothendieck topology

To keep track of the colimits in Sm/k which already exist, we need
to endow the category Sm/k with a Grothendieck topology.

Let C be a category that admits all pullbacks. A Grothendieck
topology on C is an assignment to each object X ∈ C of a collection
of families of morphisms {Uα → X}α ⊂ Mor(C ) called covering
families of X , satisfying the axioms

Any isomorphism U
∼=−→ X gives a covering family of X with one

morphism {U → X}
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Grothendieck topology

For any covering family {Uα → X}α of X and any map Y → X ,
the projections Uα ×X Y → Y from the pullback squares

Uα ×X Y //

��

Uα

��
Y // X

form a covering family {Uα ×X Y → Y }α of Y

For any covering family {Uα → X}α of X and every covering
families {Vα,β → Uα}β for each Uα, the composite {Vα,β →
Uα → X}α,β is again a covering family of X

A category C with the additional structure of a Grothendieck topol-
ogy is called a site.
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Grothendieck topology

The prototype example of a small site is the category top(X ) for a
topological space X . The objects of top(X ) are the open subsets
inclusions U → X . The morphisms are the open subsets inclusions
U → V such that the triangle commutes

U //

��

X

V

??

A family of morphisms {Uα → W }α in the category top(X ) is a
covering family if and only if

⋃
Uα covers W .
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Step 3: localize to have correct geometry

There are several choices for Grothendieck topology on the category
Sm/k . It turns out that the Nisnevich topology is most suitable
for motivic homotopy theory. We will work with the Grothendieck
topology on Sm/k generated by Nisnevich coverings.

We say a map f : X → Y in Spc(k) := Funct((Sm/k)op, sSet) is
a local weak equivalence if f induces weak equivalences of simplicial
sets in all stalks. We let L denote the collection of all local weak
equivalences.
Note here the definition of stalks depend on the Grothendieck topol-
ogy we choose. The collection L encodes the geometric information
of schemes we want to keep.
Based on work of J. Jardine, B. Blander proved the Bousfield lo-
calization of the global projective model structure on Spc(k) with
respect to L exists. We will call the new model structure the local
projective model structure on Spc(k).
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Step 4: localize to have correct homotopy

The local projective model structure on Spc(k) already has the cor-
rect geometric behavior. However, in the homotopy theory we have
in mind, the affine line A1

k should be our analog of unit interval. In
particular, it should be contractible.

Our final step is to Bousfield localize the local projective model struc-
ture on Spc(k) with respect to the map γA1

k → ∗. The new model
structure exists, we call it the motivic model structure on Spc(k).
The associated homotopy category is denoted H(k), and this is the
unstable motivic homotopy category.
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Two types of spheres

Based on our definition of k-spaces, we see each smooth k-scheme
of finite type can be regarded as a k-space via embedding

γ : Sm/k → Funct((Sm/k)op, Set)→ Funct((Sm/k)op, sSet)

Given a simplicial set S , we can form the constant simplicial presheaf
which takes the value S on each object of Sm/k . This produces an
embedding

sSet → Funct((Sm/k)op, sSet)

Hence the category Spc(k) of k-spaces contains copies of both Sm/k
and sSet. We let S1,1 denote the k-space corresponding to the
scheme A1

k − 0. Let S1,0 denote the k-space corresponding to the
simplicial set S1.
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