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Introduction

The purpose of this talk is to explain the notion of schemes, which
has now become a central object of study in algebraic geometry.
Schemes are locally ringed spaces built out of spectra of rings just
like manifolds are topological spaces built out of Rn.
For this, we first explain what is a locally ringed space. This requires
the idea of sheaves and local rings.
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Presheaves

Let X be a topological space. Let Op(X ) denote the category whose
objects are the open subsets U of X ; morphisms are the inclusions
V ⊂ U of open subsets into each other.

A presheaf of sets on X is a functor F : Op(X )op → Set. In other
words, F assigns to each open subset U ⊂ X a set F(U) and to
each inclusion V ⊂ U a map ρUV : F(U) → F(V ), called the
restriction map, such that ρUU = idF(U) and whenever W ⊂ V ⊂ U
we have ρUW = ρVWρUV . We will use the notation s|V := ρUV (s) if
s ∈ F(U).
Indeed, consider the rule F which associates to the open subset
U ⊂ X the set F(U) = {f : U → R| f is continutous} with the
obvious restriction mappings. Then F is a presheaf.
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Sheaves

A sheaf of sets on X is a presheaf of sets F which satisfies the
following ”local-to-global” property:
Given any open covering U =

⋃
i∈I Ui and any collection of elements

si ∈ F(Ui), i ∈ I such that ∀i , j ∈ I

si |Ui∩Uj
= sj |Ui∩Uj

there exists a unique s ∈ F(U) such that s|Ui
= si for all i ∈ I .

The presheaf F of continuous real valued functions is also a sheaf.
To see this, suppose that U =

⋃
i∈I Ui is an open covering, and

fi ∈ F(Ui), i ∈ I with fi |Ui∩Uj
= fj |Ui∩Uj

for all i , j ∈ I . In this
case define f : U → R by setting f (u) equal to the value of fi(u)
for any i ∈ I such that u ∈ Ui . This is well defined by assumption.
Moreover, f : U → R is a map such that its restriction to Ui agrees
with the continuous map fi . Hence clearly f is continuous.
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Stalks

Let x ∈ X be a point. Let F be a presheaf of sets on X. The stalk
of F at x is the set Fx = colimx∈UF(U) where the colimit is over
the set of open neighbourhoods U of x in X , partially ordered by
reverse inclusion.

Note that the colimit is a directed colimit. Thus

Fx = {(U , s)|x ∈ U , s ∈ F(U)}/ ∼

with equivalence relation given by (U , s) ∼ (U ′, s ′) if and only if there
exists an open subset U ′′ ⊂ U ∩ U ′ with x ∈ U ′′ and s|U′′ = s ′|U′′ .
Again, consider the presheaf of continuous functions on X . A pair
of functions f : U → R, g : U ′ → R determine the same element of
the stalk if there exists a neighbourhood U ′′ of x such that f and g
agree on U ′′. This corresponds to the classical notion of germs.
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localization of rings

Let R be a commutative ring. A subset S of R is called multiplica-
tively closed if 1 ∈ S , and ab ∈ S for all a, b ∈ S .

Let S ⊂ R be a multiplicatively closed subset. Then

(r , s) ∼ (r ′, s ′) if there exists u ∈ S such that u(rs ′ − r ′s) = 0

is an equivalence relation on R×S . We denote the equivalence class
of a pair (r , s) ∈ R × S by r

s
.

The set of all equivalence classes

{ r
s
|r ∈ R , s ∈ S} =: S−1R

is called the localization of R at S . It is a ring together with the
addition and multiplication

r

s
+

r ′

s ′
:=

rs ′ + r ′s

ss ′
,
r

s
· r
′

s ′
:=

rr ′

ss ′
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localization of rings

For example, let f be an element in R . Let S = {f n | n ≥ 0}.
Then S is a multiplicatively closed subset of R . The corresponding
localization S−1R is often written as Rf ; we call it the localization
of R at the element f .

As another example, let p be a prime ideal of R . Let S = R−p, then
S is multiplicatively closed, since a /∈ p and b /∈ p implies ab /∈ p.
The resulting localization S−1R is usually denoted by Rp and called
the localization of R at the prime ideal p.
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locally ringed spaces

Let R be a commutative ring. Then R is a local ring if R has exactly
one maximal ideal.

Any field k is a local ring with one maximal ideal (0).
Let p be a prime ideal of R . Then Rp is a local ring with the maximal
ideal pRp = {a

s
| a ∈ p, s /∈ p}.

Now, we are ready to define locally ringed spaces.
A locally ringed space (X ,OX ) is a pair consisting of a topological
space X and a sheaf of rings OX on X where all of whose stalks are
local rings.
Typical examples of locally ringed spaces are spectra of commutative
rings.
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Spectrum of a ring - underlying set

Let R be a commutative ring. We let Spec(R) denote the set of
prime ideals of R .

For example, consider R = C[x ]. Then

Spec(C[x ]) = {(x − a)|a ∈ C} ∪ {0}

If φ : R → R ′ is a ring homomorphism, and p′ is a prime ideal of R ′,
then φ−1(p′) is a prime ideal of R . Therefore, there’s induced map
Spec(φ) : Spec(R ′)→ Spec(R), p′ → φ−1p′.
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Spectrum of a ring - topology

Each element r ∈ R can be viewed as a function on Spec(R), the
value of r on p ∈ Spec(R) is r mod p in R/p.

Again, we look at the example where R = C[x ]. f (x) = x2− 3x + 1
is an element of R . It defines a function on Spec(R), where at
(x − a), the function value is f mod (x − a) = f (a). The value of f
at (0) is f(x) (mod 0), which is just f(x).
To define a topology on Spec(R), the intuition is that the subset
of Spec(R) where a function vanishes should reasonably be a closed
set, and the Zariski topology is defined by saying that the only sets
we should consider closed should be these sets, and other sets forced
to be closed by these.
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Spectrum of a ring - topology

If S is a subset of a ring R , define the Vanishing set of S by

V (S) = {p ∈ Spec(R)|S ⊂ p}

It is the set of points on which all elements of S evaluate to zero.
(Recall that “vanishing at a point” means the same thing as “con-
tained in a prime”.)
The Zariski topology on Spec(R) is defined by declaring that these
— and no other — are the closed subsets of Spec(R).
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Spectrum of a ring - topology

Again, we examine the Zariski topology on Spec(C[x ]) to illustrate
the idea.
We can associate the point (x − a) in Spec(C[x ]) to a ∈ C. Besides
the “traditional” points for each complex number, there is also an
extra point (0). The closed sets in Spec(C[x ]) include the entire
space, and the union of a finite number of “traditional” points. Note
the new point (0) is not closed. If a closed set contains (0), then it
must be V ({0}), which is the entire space.
Therefore, we can mostly picture Spec(C[x ]) as C. For the extra
point (0), we will somehow associate it with the complex plane pass-
ing through all the other points.
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Spectrum of a ring - topology

Let R be a commutative ring, let f ∈ R . We let D(f ) ⊂ Spec(R) be
the set of prime ideals not containing f. D(f ) is called a distinguished
open set of Spec(R).

D(f ) is the subset of Spec(R) where the function f 6= 0. One
can think of this as “Doesn’t-vanish set” whereas V (f ) being the
Vanishing set.
Given a subset S ⊂ R , the complement of V (S) is just ∪f ∈SD(f ).
Hence the distinguished open sets form a basis of open sets for the
Zariski topology on Spec(R).
Suppose that φ : R → R ′ is a ring homomorphism. The induced
map Spec(φ) : Spec(R ′) → Spec(R), p′ → φ−1p′ is continuous
for the Zariski topologies. In fact, for any element f ∈ R we have
Spec(φ)−1(D(f )) = D(φ(f )). Therefore, Spec defines a functor
Spec : Ring op → Top.
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Spectrum of a ring - structure sheaf

Lemma: If f , g ∈ R , then D(f ) ∩ D(g) = D(fg).
Lemma: Let f , g ∈ R such that D(g) ⊂ D(f ), then g e = af for
some e ≥ 1, a ∈ R . Hence, there is a canonical ring map Rf → Rg

b

f n
→ anb

gne

Let R be a commutative ring. The structure sheaf OSpec(R) on
Spec(R) is defined as the unique sheaf of rings such that:
(a) on the standard opens OSpec(R)(D(f )) = Rf .
(b) If D(g) ⊂ D(f ), then the restriction map

OSpec(R)(D(f ))→ OSpec(R)(D(g))

is the canonical ring map Rf → Rg .
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Spectrum of a ring - structure sheaf

From the definition, on the open set Spec(R) = D(u) for unit u ∈ R ,

OSpec(R)(Spec(R)) = OSpec(R)(D(u)) = Ru = R

Let x be a point in Spec(R) corresponding to a prime ideal p ⊂ R .
Then the stalk of OSpec(R) at x can be computed as

OSpec(R),x = colimf ∈R,f /∈pRf = Rp

Therefore (Spec(R),OSpec(R)) is a locally ringed space. We call it
the spectrum of R and still denote it by Spec(R).
As a convention, we denote A1

C := Spec(C[x ]) and

An
C := Spec(C[x1, x2, · · · , xn])
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Schemes

An affine scheme is a locally ringed space isomorphic as a locally
ringed space to Spec(R) for some commutative ring R.
A scheme is a locally ringed space with the property that every point
has an open neighbourhood which is an affine scheme.
One can show that an open subspace U of a scheme X is still a
scheme (with the restriction of OX to U as structural sheaf), but an
open subspace of an affine scheme is not necessarily affine.
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Schemes

Consider A1
C = Spec C[x ]. Let U = D(x) be an open subspace of

A1
C, we have OA1

C
(U) = C[x ]x = C[x , 1/x ]. Moreover, OA1

C
restricts

to a sheaf on U , making U a locally ringed space.

One can show U = Spec(C[x , 1/x ]). Intuitively, the reason is as
follows: given an element f of a ring R , there is a bijection of prime
ideals of Rf and the prime ideals of R not containing f . Hence when
we study prime ideals of C[x ]x , we only need to take the results for
C[x ], then restrict to D(x).
Since we can intuitively think of the point (x) ∈ A1

C as 0 ∈ C, we
usually denote the scheme U as A1

C − 0. In the following talks, we
will see A1

C − 0 corresponds to the motivic sphere S1,1.
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What’s next

Next time, we will discuss the unstable motivic homotopy theory,
which can be described as the associated homotopy category of a
model structure on Fun((Sm/k)op, sSet). We will talk about the
model structure, as well as some motivation behind such construc-
tions.
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