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Pushout in general categories

Let C be a category. Let f : X → Y and g : X → Z be two

morphisms in C . A pushout of the diagram Y
f←− X

g−→ Z in C is an
object P together with two morphisms c1 : Y → P and c2 : Z → P
for which the diagram

X

f
��

g // Z

c2
��

Y c1
// P

commutes. Moreover, the pullback must be universal in the following
sense.
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Pushout in general categories

For any other such triple (Q, q1, q2) where q1 : Y → Q and q2 : Z →
Q are morphisms with q1f = q2g , there exists a unique u : P → Q
such that the following diagram commutes.

X

f
��

g // Z

c2
�� q2

��

Y c1
//

q1 --

P
u

��
Q

If a pullback exists in C , then it is unique up to canonical isomor-
phism.
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Pushout in general categories

In Set, the pushout of Y
f←− X

g−→ Z always exists and is given by

X

f
��

g // Z

c2
��

Y c1
// P

P = (Y
∐

Z )/ ∼, where ∼ is the equivalence relation generated by
requiring fx ∼ gx for all x ∈ X .
If f , g are both inclusion of subsets, then P = Y ∪ Z .
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Pushout of topological spaces

In sSet, the pushout P of Y
f←− X

g−→ Z always exists and is computed
levelwise. In other words, P([k]) is the pushout of sets

Y ([k])
fk←− X ([k])

gk−→ Z ([k])

In Top, the pushout P of Y
f←− X

g−→ Z always exists and is given by
P = (Y

∐
Z )/ ∼, where ∼ is the equivalence relation generated by

requiring fx ∼ gx for all x ∈ X .
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Pushout of topological spaces

There are pushout squares

Sn−1

i
��

i // Dn

��
Dn // Sn

Sn−1

��

// ∗

��
∗ // ∗

We have a commutative diagram

Dn

∼
��

Sn−1ioo i //

∼

Dn

∼
��

∗ Sn−1oo // ∗

where the vertical arrows are homotopy equivalences. However, the
induced map of pushouts Sn → ∗ is not a homotopy equivalence.
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Pushout of topological spaces

To solve the problem, one might attempt to work in the homotopy
category Ho(Top). It has the same objects as Top but the morphisms
are replaced by homotopy equivalent classes of continuous maps.

The problem is Ho(Top) does not have all pushouts. For example,

one can show the push out of ∗ ← S1 ×2−→ S1 does not exist in
Ho(Top).
A better solution is provided by using a model structure on Top.
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Model category

A model category is a category C with three distinguished classes
of maps: (i) weak equivalences, (ii) fibrations, and (iii) cofibrations
each of which is closed under composition and contains all identity
maps. A map which is both a fibration (resp. cofibration) and a weak
equivalence is called an acyclic fibration (resp. acyclic cofibration).
We require the following axioms:

Axiom 1: Limits and colimits exist in C.
Axiom 2: If two of f, g, gf are weak equivalences, so is the third.
Axiom 3: If f is a retract of g and g is a fibration, cofibration, or a
weak equivalence, then so is f.

X

f
��

i // A
j //

g
��

X

f
��

Y h // B k // Y

ji = IdX

kh = IdY
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Model category

Axiom 4: Given a commutative diagram of the form

A //

i
��

X

p
��

B //

h

??

Y

a lift h exists in either of the following two situations:
(i) i is a cofibration and p is an acyclic fibration, or
(ii) i is an acyclic cofibration and p is a fibration.

Axiom 5: Any map f can be functorially factored in two ways:
(i) f = pi, where i is a cofibration and p is an acyclic fibration, and
(ii) f = pi, where i is an acyclic cofibration and p is a fibration.
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Model category

The category Top of topological spaces can be given the structure
of a model category by defining f : X → Y to be

a weak equivalence if f is a weak homotopy equivalence

a cofibration if f is a retract of a map X → Y ′ in which Y ′ is
obtained from X by attaching cells

a fibration if f is a Serre fibration, i.e. if f has homotopy lifting
property for each CW-complex A

A //

i
��

X

f
��

A× [0, 1] //

h

::

Y
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(Co)fibrant objects

An initial object in a category C is an object ∅ such that for any
object X of C, there is a unique morphism ∅ → X . An initial object,
if it exists, is unique up to unique isomorphism.

A terminal object in a category C is an object ∗ such that for any
object X of C, there is a unique morphism X → ∗. A terminal object,
if it exists, is unique up to unique isomorphism.
A model category C has both an initial object ∅ and a terminal object
∗ (by Axiom 1). An object X ∈ C is said to be cofibrant if ∅ → X
is a cofibration, and fibrant if X → ∗ is a fibration.
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(Co)fibrant objects

For each object X in C we can apply axiom 5 to the map ∅ → X
and obtain a natural acyclic fibration

pX : QX ∼ // // X

with QX cofibrant.

We can also apply the axiom to the map X → ∗ and obtain a natural
acyclic cofibration

iX : X �
� ∼ // RX

with RX fibrant. This suggests we have natural ways to replace
general objects by weakly equivalent better behaved objects.
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Homotopy relation

Let C be a model category, A be an object in C . A cylinder object
for A is an object A ∧ I of C together with a commutative diagram

A

i0
��

A ∧ I ∼ // A

A

i1

OO

The notation A ∧ I is meant to suggest the product of A with an
interval, however, a cylinder object A∧ I is not necessarily the prod-
uct of A with anything in C . An object A of C might have many
cylinder objects associated to it. We do not assume that there is
some preferred natural cylinder object for A.
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Homotopy relation

Two maps f , g : A → X in C are said to be homotopic (written
f ∼ g) if there exists a cylinder object A ∧ I for A together with a
map H : A ∧ I → X making the following diagram commutes

A

i0
��

f

""
A ∧ I H // X

A

i1

OO

g

<<

Such a map H is said to be a homotopy from f to g.
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Homotopy relation

If A and X are both fibrant and cofibrant, then

∼ is an equivalence relation on HomC (A,X ). We let π(A,X )
denote the set of equivalence classes of HomC (A,X ).

The composition in C induces a map:

π(A′,A)× π(A,X )→ π(A′,X ), ([h], [f ]) 7→ [fh]

A map f : A → X is a weak equivalence if and only if f has
a homotopy inverse, i.e., if and only if there exists a map g :
X → A such that the composites gf and fg are homotopic to
the respective identity maps.
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Homotopy category

The homotopy category Ho(C) of a model category C is the category
with the same objects as C and with

HomHo(C)(X ,Y ) = π(RQX ,RQY )

There is a functor γ : C → Ho(C ) which is the identity on objects
and sends a map f : X → Y to the equivalent class of the map
RQf : RQX → RQY .
The adjunction

sSet
| | // Top
Sing
oo

induce equivalence of homotopy categories

Ho(sSet) // Ho(Top)oo
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Derived functors

Let C be a model category, F : C → D be a functor. Next we define
the best possible approximations to an “extension of F to Ho(C)”.

Suppose that F(f) is an isomorphism whenever f is a weak equivalence
between cofibrant objects in C. Then the functor LF := FQ is called
the left derived functor of F, where Q is the cofibrant replacement
functor. There exists a diagram

Ho(C )
LF

⇓t
""

C
F

//

γ

OO

D

making LF “universal from the left”.
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Derived functors

A right derived functor for F is a functor RF : Ho(C ) → D con-
structed similarly with the analogous property of being “universal
from the right”.

C F //

γ

��

D

Ho(C )
RF

⇓t
<<
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Homotopy pushout

Recall that in the category Top of topological spaces, taking pushout
does not respect homotopy equivalences. Now we are ready to con-
struct a homotopy meaningful approximation of pushouts.

Let D denote the category {a ← b → c} and TopD denote the
category of functors D → Top. An object of TopD is pushout data
X (a) ← X (b) → X (c) in Top and a morphism f : X → Y is a
commutative diagram

X (a)

fa
��

X (b)oo //

fb
��

X (c)

fc
��

Y (a) Y (b)oo // Y (c)

The pushout construction gives a functor P : TopD → Top.

Yu Zhang (NKU) Motivic Homotopy Theory - part 2 May 21, 2021 19 / 23



Homotopy pushout

Recall that in the category Top of topological spaces, taking pushout
does not respect homotopy equivalences. Now we are ready to con-
struct a homotopy meaningful approximation of pushouts.
Let D denote the category {a ← b → c} and TopD denote the
category of functors D → Top. An object of TopD is pushout data
X (a) ← X (b) → X (c) in Top and a morphism f : X → Y is a
commutative diagram

X (a)

fa
��

X (b)oo //

fb
��

X (c)

fc
��

Y (a) Y (b)oo // Y (c)

The pushout construction gives a functor P : TopD → Top.

Yu Zhang (NKU) Motivic Homotopy Theory - part 2 May 21, 2021 19 / 23



Homotopy pushout

The category TopD has a model structure where a map f : X → Y
in TopD is

a weak equivalence if the morphisms fa, fb, fc are weak equiva-
lences in Top

a fibration if the morphisms fa, fb, fc are fibrations in Top

In this model structure, an object X (a)← X (b)→ X (c) is cofibrant
if and only if X (a),X (b),X (c) are cofibrant in Top and the maps
X (b)→ X (a),X (b)→ X (c) are cofibrations in Top.
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Homotopy pushout

The pushout construction gives a functor P : TopD → Top. The
functor P is not homotopy invariant and so P does not directly induce
a functor Ho(TopD)→ Ho(Top).

However, one can show there is a (total) left derived functor LP :
Ho(TopD)→ Ho(Top) which in a certain sense is the best possible
homotopy invariant approximation to pushout. The resulting functor
LP is called homotopy pushout.
In practice, LP(X) is computed as P(X’) for any cofibrant object X’
of TopD weakly equivalent to X.

LP(∗ ← Sn−1 → ∗) = P(Dn ← Sn−1 → Dn) = Sn
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Tor and Ext

Let A be an R module for some commutative ring R. A can be viewed
as a (co)chain complex concentrated on level 0.

There is a model structure on chain complexes such that a projective
resolution of the R module A corresponds to a cofibrant replacement
of the chain complex A.
Similarly, there is a model structure on cochain complexes such that
an injective resolution of the R module A corresponds to a fibrant
replacement of the cochain complex A.
Hence Tor and Ext are derived functors of ⊗ and Hom. In other
words, Tor and Ext are homotopical corrections of the original func-
tors.
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What’s next

The (unstable) motivic homotopy category can be viewed as the
homotopy category of a model category Fun((Sm/k)op, sSet), where
Sm/k is a category of schemes. We have talked about simplicial sets
in the first talk. We will introduce the notion of schemes next time.
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