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Overview

Motivic homotopy theory is the homotopy theory of schemes. It is a
way to apply the techniques of algebraic topology to study schemes.

In recent years, motivic homotopy theory has also contributed to the
computations in classical homotopy theory.
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Overview

There are functors between different categories as follows:

SH(R)
RC //

F
��

SHC2

U

��
SH(C)

RC // SH

SH(R) is the R-motivic stable homotopy category
SH(C) is the C-motivic stable homotopy category
SHC2 is the C2-equivariant stable homotopy category
SH is the classical stable homotopy category
RC is the realization functor defined by taking C-points of a scheme
U is the forgetful functor
F is the base change functor
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Classical homotopy and motivic homotopy

classical stable homotopy C-motivic stable homotopy
S1 S1,0, S1,1

Sn = (S1)∧n Sn,m = (S1,0)∧n−m ∧ (S1,1)∧m

π∗ π∗,∗
H∗,H

∗ H∗,∗,H
∗,∗

A∗,A∗ A∗,∗,A∗,∗
Adams spectral sequence Motivic Adams spectral sequence

⇐= realization
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Classical homotopy and motivic homotopy

There are maps of spectral sequences:

motivic Adams for Ŝ0,0

tt ((

motivic Adams for Ŝ0,0/τ Adams for Ŝ0

classical algebraic Novikov
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Category

A category C is given by a collection of objects and a collection of
morphisms (also called arrows) which have the following structure.
1. Each morphism f : X → Y has a domain X and a codomain Y
which are objects. One also writes X = dom(f) and Y = cod(f)
2. Given two morphisms f and g such that cod(f) = dom(g), the
composition of f and g, written gf, is defined and has domain dom(f)
and codomain cod(g)
3. Composition is associative, that is: given f : X → Y , g : Y → Z
and h : Z → W , h(gf ) = (hg)f
4. For every object X there is an identity arrow idX : X → X ,
satisfying idXg = g for every g : Y → X and fidX = f for every
f : X → Y
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Category

We give several examples of categories:

1. Set is the category which has the class of all sets as objects, and
functions between sets as morphisms.
2. Ab is the category of abelian groups and group homomorphisms.
3. Top is the category of topological spaces and continuous func-
tions.
4. Given a category C we can form its opposite category C op which
has the same objects and morphisms as C , but with reversed direc-
tion; so if f : X → Y in C then f : Y → X in C op.

Yu Zhang (NKU) Motivic Homotopy Theory - part 1 May 14, 2021 7 / 17



Category

We give several examples of categories:
1. Set is the category which has the class of all sets as objects, and
functions between sets as morphisms.

2. Ab is the category of abelian groups and group homomorphisms.
3. Top is the category of topological spaces and continuous func-
tions.
4. Given a category C we can form its opposite category C op which
has the same objects and morphisms as C , but with reversed direc-
tion; so if f : X → Y in C then f : Y → X in C op.

Yu Zhang (NKU) Motivic Homotopy Theory - part 1 May 14, 2021 7 / 17



Category

We give several examples of categories:
1. Set is the category which has the class of all sets as objects, and
functions between sets as morphisms.
2. Ab is the category of abelian groups and group homomorphisms.

3. Top is the category of topological spaces and continuous func-
tions.
4. Given a category C we can form its opposite category C op which
has the same objects and morphisms as C , but with reversed direc-
tion; so if f : X → Y in C then f : Y → X in C op.

Yu Zhang (NKU) Motivic Homotopy Theory - part 1 May 14, 2021 7 / 17



Category

We give several examples of categories:
1. Set is the category which has the class of all sets as objects, and
functions between sets as morphisms.
2. Ab is the category of abelian groups and group homomorphisms.
3. Top is the category of topological spaces and continuous func-
tions.

4. Given a category C we can form its opposite category C op which
has the same objects and morphisms as C , but with reversed direc-
tion; so if f : X → Y in C then f : Y → X in C op.

Yu Zhang (NKU) Motivic Homotopy Theory - part 1 May 14, 2021 7 / 17



Category

We give several examples of categories:
1. Set is the category which has the class of all sets as objects, and
functions between sets as morphisms.
2. Ab is the category of abelian groups and group homomorphisms.
3. Top is the category of topological spaces and continuous func-
tions.
4. Given a category C we can form its opposite category C op which
has the same objects and morphisms as C , but with reversed direc-
tion; so if f : X → Y in C then f : Y → X in C op.

Yu Zhang (NKU) Motivic Homotopy Theory - part 1 May 14, 2021 7 / 17



Functor

Let C and D be categories. A functor F from C to D is a mapping
that associates each object X in C to an object F (X ) in D, associates
each morphism f : X → Y in C to a morphism F (f ) : F (X )→ F (Y )
in D such that: F (idX ) = idF (X ) and F (gf ) = F (g)F (f ).
That is, functors must preserve identity morphisms and composition
of morphisms.

For example, there is a functor U : Ab → Set which assigns to any
abelian group G its underlying set. We call this functor “forgetful”:
it “forgets” the mathematical structure.
There is also a ”free” functor Free : Set → Ab which assigns to any
set X the free abelian group generated by the elements in X.
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Natural transformation

Let F ,G be functors F ,G : C → D. A natural transformation
η : F → G associates, to every object X in C , a morphism ηX :
F (X ) → G (X ). For every f : X → Y in C , the assignment η is
required to make the following diagram commutes in D:

F (X )
ηX //

Ff
��

G (X )

Gf
��

F (Y )
ηY // G (Y )
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Adjoint functors

Let F : C → D, G : D → C be a pair of functors such that for all
objects X ∈ C ,Y ∈ D, there is a natural bijection of morphism sets

HomD(FX ,Y ) ∼= HomC (X ,GY )

Then we say F is left adjoint to G, G is right adjoint to F.

For example, the free functor Free : Set → Ab is left adjoint to the
forgetful functor U : Ab → Set: we have natural bijections

HomAb(Free(X ),G ) ∼= HomSet(X ,U(G ))

This is because a map between free abelian groups is determined by
where it sends the generators, and a generator can be mapped to
anything.
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Functor category

Suppose C is a small category and D is an arbitrary category. There
is a category of functors from C to D, written as Fun(C ,D) or DC .
The objects are the functors from C to D, and the morphisms are
the natural transformations between such functors.

Functor category DC can inherit many nice properties of D.
Spoiler: the unstable motivic homotopy category is a functor cat-
egory Fun((Sm/k)op, sSet), where Sm/k is a category of schemes,
sSet is the category of simplicial sets.
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Simplicial sets

Similar to the approach of CW complexes for modeling topologi-
cal spaces, simplicial sets provide purely algebraic models capturing
those topological spaces that can be built up from simplices.

Let X be a topological space. A singular n-simplex in X is a contin-
uous map from the standard n-simplex ∆n to X. Let SXn := {σ :
∆n → X} denote the set of all singular n-simplices of X.
There are face maps di : SXn → SXn−1 and degeneracy maps sj :
SXn−1 → SXn.
The family of sets SXn together with the structure maps form a
typical example of simplicial sets.
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Simplicial sets

The simplex category ∆: the objects are non-empty finite totally
ordered sets [n] = {0, 1, . . . , n}, n ≥ 0, and the morphisms are
weakly order-preserving functions (f (i) ≥ f (j) if i > j).

For example, (0 7→ 0, 1 7→ 2) is a morphism f : [1]→ [2].
(0 7→ 0, 1 7→ 0, 2 7→ 1) is a morphism g : [2]→ [1].
A simplicial set X is a functor X : ∆op → Set.
Let sSet denote the category of all simplicial sets.
By definition, sSet = Fun(∆op, Set) = Set∆op

.
For each set K, there is a constant simplicial set, also denoted by K .
It sends all objects in ∆op to K and all morphisms in ∆op to IdK .
For each n ≥ 0, there is a simplicial set ∆[n] : ∆op → Set defined
as Hom∆(−, [n]). In other words, ∆[n]([m]) = Hom∆([m], [n]), the
set of all weakly order-preserving functions from [m] to [n].
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Simplicial sets

We have seen there is a singularization functor Sing : Top → sSet
sending a topological space X to the simplicial set

Sing(X ) : ∆op → Set, [m] 7→ {∆m → X}

There is also a functor | | : sSet → Top called realization. This is
the unique functor characterized by the following two properties: (a)
|∆[n]| = ∆n, (b) | | preserves colimits of simplicial sets.
Intuitively, the realization of X is the topological space obtained if
every n-simplex of X is replaced by a topological n-simplex and these
topological simplices are glued together in the fashion the simplices
of X hang together.
There is an adjunction of categories

sSet
| | // Top
Sing
oo
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Convenient category for doing homotopy

Suppose now we want to find a categorical setting for doing topology.
A natural choice is Top, where the objects are all topological spaces
and the morphisms are all continuous maps.
However, from a categorical point of view, this category does not
has all the nice properties we want.

Another attempt is to only work with CW complexes, however, even
if X, Y are both CW complexes, Map (X, Y) is not necessarily a CW
complex.
For example, Map(N, [0, 1]) =

∏
n∈N[0, 1] is not a CW complex.

Note a CW complex need to be the countable union of its finite
dimensional skeletons.
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Convenient category for doing homotopy

Nowadays, a commonly accepted choice is to let Top denote the
category of all compactly generated weakly Hausdorff spaces. The
morphisms are just continuous maps.
This category satisfies the following properties we desire:

1. It contains all CW complexes.
2. It is both complete and cocomplete.
3. It is cartesian closed. This means there are bijections of Hom sets

Hom(X × Y ,Z ) ∼= Hom(X ,Map(Y ,Z ))

Moreover, we also have homeomorphisms

Map(X × Y ,Z ) ∼= Map(X ,Map(Y ,Z ))
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Convenient category for doing homotopy

Another choice is to just to work with simplicial sets. The homotopy
theory of simplicial sets is equivalent to the homotopy theory of CW
complexes.

Moreover, the category sSet of simplicial sets is both complete and
cocomplete. The (co)limits are computed levelwise. For example,
(X × Y )n = Xn × Yn.
sSet is also cartesian closed. This means there are bijections of Hom
sets

Hom(X × Y ,Z ) ∼= Hom(X ,Map(Y ,Z ))

Moreover, we also have isomorphisms of simplicial sets
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