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Abstract. The aim of this paper is to show that homotopy pro-nilpotent
structured ring spectra are TQ-local, where structured ring spectra are de-

scribed as algebras over a spectral operad O. Here, TQ is short for topological

Quillen homology, which is weakly equivalent to O-algebra stabilization. An
O-algebra is called homotopy pro-nilpotent if it is equivalent to a limit of nilpo-

tent O-algebras. Our result provides new positive evidence to a conjecture by
Francis-Gaisgory on Koszul duality for general operads. As an application, we

simultaneously extend the previously known 0-connected and nilpotent TQ-

Whitehead theorems to a homotopy pro-nilpotent TQ-Whitehead theorem.

1. Introduction

Spectra play a key role in the development of modern algebraic topology. Lots
of important examples of spectra, such as Eilenberg–Mac Lane spectra, bordism
spectra and complex (or real) K-theory spectra, are equipped with natural algebraic
structures. However, the algebraic structures on spectra are often more general
than their classical analogs, such as commutative rings. Spectra equipped with
generalized algebraic structures are called structured ring spectra.

We can formalize our definition of structured ring spectra as follows. Let R be
any commutative monoid in the category of symmetric spectra of simplicial sets.
In other words, let R be any commutative ring spectrum. Structured ring spectra
are spectra with extra algebraic structures that can be described as algebras over
an operad O in symmetric spectra, or more generally, in ModR. Here, we let
(ModR, ∧ ,R) denote the symmetric monoidal category of R-modules. For a fixed
operad O, denote by AlgO the category of O-algebras. For readers not familiar
with operads, [6, 18, 19, 29, 33, 37] are some useful references. In this paper we
work with reduced operads O (i.e., such that O[0] = ∗, where ∗ denotes the trivial
R-module); algebras over O are then called non-unital. This includes the examples
of non-unital En algebra spectra.

Topological Quillen homology [3, 5], or TQ-homology, is the topological analog
of André–Quillen homology [7, 20, 36] in the setting of non-unital structured ring
spectra. We recall the precise definition of TQ-homology below.

Fix an operad O as above. Let the operad τ1O be the natural truncation of
O above level 1. In particular, τ1O[1] = O[1] and τ1O[k] = ∗ for k ≥ 0, k 6= 1.
Then there is a canonical truncation map O → τ1O in the category of operads.
We can factor the truncation map as O → J → τ1O, a cofibration followed by a
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weak equivalence with respect to the projective model structure of operads, see [25,
Definition 5.47, 7.10] for more details.

The map O→ J induces the corresponding change of operads adjunction

(1.1) AlgO
Q // AlgJ
U
oo

with left adjoint on top, where Q(X) = J ◦O (X) and the forgetful functor U is
the restriction along the operad map O→ J . Here ◦ denotes composition product,
J ◦O (X) = coeq(J ◦ O ◦X ⇒ J ◦X), see, for example, [24, Definition 2.8].

Convention 1.1. Throughout this paper, we work with the positive flat stable model
structure (see, for example [25, 7.15]) on AlgO and AlgJ unless otherwise specified.
A map of O-algebras is called a (co)fibration if it is so with respect to the positive
flat stable model structure on AlgO. Similarly, an O-algebra is called (co)fibrant if
it is so with respect to the positive flat stable model structure on AlgO.

Remark 1.2. The category AlgJ of J-algebras is Quillen equivalent to the category
of O[1]-modules [25, 7.21]. One can think of J as a fattened-up version of τ1O. The
advantage of working with J instead of τ1O will become clear after we introduce
the TQ-completion construction (Definition 2.1). See Remark 2.2.

Definition 1.3. Let X be an O-algebra. The topological Quillen homology (or
TQ-homology, for short) of X is

TQ(X) := RU(LQ(X))

the O-algebra defined via the indicated composite of total right and left derived
functors. Note the forgetful functor U preserves all weak equivalences. Therefore,
if X is cofibrant, then TQ(X) ' UQ(X) and the unit of the (Q,U) adjunction in
(1.1) is the TQ-Hurewicz map X → UQX of the form X → TQ(X).

TQ-homology has been shown to enjoy several properties analogous to the or-
dinary homology of spaces; see, for instance, [3, 4, 25]. Furthermore, it turns out
that TQ-homology is weakly equivalent to stabilization Ω∞Σ∞ in the category of
O-algebras [4, 11, 30, 35]. One can think of the adjunction (1.1) as an analog of
suspension spectrum and infinite loop space adjunction (Σ∞,Ω∞).

Let K := QU denote the comonad associated to the adjunction (Q,U). Then the
image of Q lands in the category of K-coalgebras. Moreover, there is an associated
adjunction of ∞-categories [11, 1.3]

(1.2) AlgO
// coAlgKoo

where the left adjoint is Q.
Francis-Gaitsgory [17] studied analogous phenomena in terms of Koszul duality

of general operads. They made a conjecture, which we can rephrase in terms of
structured ring spectra as follows.

The Francis-Gaitsgory Conjecture [17, 3.4.5]. Adjunction (1.2) induces an
equivalence of homotopy categories after restricting AlgO to the full subcategory of
homotopy pro-nilpotent O-algebras.

We recall relevant definitions below.



HOMOTOPY PRO-NILPOTENT STRUCTURED RING SPECTRA 3

Definition 1.4. Let X be an O-algebra and M ≥ 2. We say that X is M -nilpotent
if all the M -ary and higher operations O[t] ∧ X∧t → X of X are trivial (i.e., if
these maps factor through the trivial R-module ∗ for each t ≥ M). An O-algebra
is called nilpotent if it is M -nilpotent for some M ≥ 2. An O-algebra is homotopy
pro-nilpotent if it is weakly equivalent to the homotopy limit of a small diagram of
nilpotent O-algebras.

Some special cases of the Francis-Gaitsgory conjecture have been proved.
If O is truncated, meaning there exists some large enough n such that O[k] = ∗

for all k ≥ n, then the conjecture has been proved by Heuts [27, 6.9]. In this special
case, all O-algebras are nilpotent.

For a general operad O, Ching-Harper [11, 1.2] proved that adjunction (1.2)
induces an equivalence of homotopy categories after restricting to 0-connected ob-
jects on both sides, under the assumption that R and O[k] for each k are all (−1)-
connected. Here we say an O-algebra X is 0-connected if the homotopy groups πkX
of the underlying spectra are trivial for all k ≤ 0.

If an O-algebra X is 0-connected, then X is homotopy pro-nilpotent. This is
because the homotopy completion tower of X converges strongly to X [25, 1.12].
Hence, the result of Ching-Harper partially solves the Francis-Gaitsgory conjecture.
The general question for homotopy pro-nilpotent objects remains open. This is the
reason why the main result of [1] has 0-connected assumptions.

Remark 1.5. In particular, if one take O to be an En operad in ModR, the result
of Ching-Harper [11] is related to the Koszul duality between En-algebras and En-
coalgebras, see also [2, 12, 19, 32].

The unit of adjunction (1.2) is shown [11] to be weakly equivalent to TQ-
completion (Definition 2.1), which is an analog of Bousfield-Kan completion [9]
of spaces. Hence, for a general operad O, to prove the “unit side” of the Francis-
Gaitsgory conjecture amounts to proving for each (cofibrant) homotopy pro-nilpotent
O-algebra X, the TQ-completion map X → X∧TQ is a weak equivalence of O-
algebras. The following are results in this direction.

(1) The result of Ching-Harper [11] implies for each 0-connected O-algebra X,
X → X∧TQ is a weak equivalence. Here R and O are assumed to be (−1)-connected.

(2) Ching-Harper [10] proved for nilpotent O-algebra X, X is a retract of X∧TQ
in the homotopy category of O-algebras.

(3) Schonsheck [39] proved that ifX is the homotopy fiber of a fibration E → B of
O-algebras where both E,B are 0-connected, then X → X∧TQ is a weak equivalence.
Here R and O are assumed to be (−1)-connected.

However, none of the known results could work for arbitrary homotopy pro-
nilpotent O-algebras. In this paper, we take a different approach and work with
TQ-localization (Definition 2.6) in place of TQ-completion. Our main result is the
following.

Theorem 1.6. Let X be a homotopy pro-nilpotent O-algebra, then an arbitrary
fibrant replacement of X in AlgO is TQ-local.

Remark 1.7. The appearance of fibrant replacement is due to our definition (Def-
inition 2.6) that TQ-local O-algebras are required to be fibrant (with respect to
the positive flat stable model structure, see Convention 1.1). If such X is already
fibrant, then X is TQ-local.
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Our result provides positive evidence to the Francis-Gaitsgory conjecture for
arbitrary homotopy pro-nilpotent O-algebra X. Indeed, X → X∧TQ is a weak equiv-
alence if and only if (1) X is TQ-local, and (2) X → X∧TQ is a TQ-homology equiv-
alence (Proposition 3.6). We have proved the first part for homotopy pro-nilpotent
O-algebras, only the second half remains.

As an application of the main result, we obtain the following homotopy pro-
nilpotent TQ-Whitehead theorem that simultaneously extends the previously known
0-connected and nilpotent TQ-Whitehead theorems [10, 25].

Theorem 1.8. A map X → Y between homotopy pro-nilpotent O-algebras is a
weak equivalence if and only if it is a TQ-homology equivalence.

There are lots of important examples of O-algebras that are homotopy pro-
nilpotent but are not nilpotent nor 0-connected. For example, in the context of
Goodwillie calculus, the Taylor tower of the identity functor on AlgO always con-
verges to homotopy pro-nilpotent O-algebras [25, 1.14]. But those O-algebras are
not nilpotent nor 0-connected in general. See also [13, 30, 35, 40] for related dis-
cussions.

Organization of the paper. In Section 2, we review the basic setup for TQ-
completion and TQ-localization. We also recall the TQ|NilM -completion construc-
tion, which will play a key role in our proof of the main result (Theorem 1.6).

In Section 3, we prove Theorems 1.6 and 1.8. Along the way, we also discuss the
relation between TQ-completion and TQ-localization (Proposition 3.6).

Assumptions on the operad O. We work in the category AlgO of algebras over an
operad O in ModR, the category of R-modules, where R is a commutative monoid
in the category of symmetric spectra. Throughout this paper, we assume that
O[0] = ∗. We also make a technical assumption that the natural maps R → O[1]
and ∗ → O[n] are flat stable cofibrations in R-modules for each n ≥ 0; see, for
instance, [11, 2.1, 6.12]. This is the same cofibrancy condition that also appears
in [11, 25]. This assumption does not limit the usage of our main result since,
up to weak equivalence, any operad O can be replaced by one that satisfies such
conditions. We do not need connectivity assumptions on R and O.

Acknowledgments. The author would like to thank John E. Harper and Niko
Schonsheck for inspiring discussions and helpful suggestions. The author would
like to thank Michael Ching, Martin Frankland, Mark W. Johnson and Jérôme
Scherer for helpful conversations. The author is grateful to Oscar Randal-Williams
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author would like to thank the anonymous referee for detailed suggestions. The
author was supported in part by the Simons Foundation: Collaboration Grants
for Mathematicians #638247, and by the National Natural Science Foundation of
China (No. 11871284; 12001474; 12261091; 12271183).

2. TQ-completion and TQ-localization

In this section, we review the definitions of TQ-completion and TQ|NilM -completion.
We also recall the definitions of TQ-localization and the TQ-local homotopy theory
on AlgO.

We first recall the TQ-completion construction [25].
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Let Z be a cofibrant O-algebra. Consider the cosimplicial resolution of Z with
respect to TQ-homology of the form

(2.1) Z // (UQ)Z // // (UQ)2Z
oo ////// (UQ)3Z · · ·

oooo

in AlgO, denoted Z → C(Z), with coface maps obtained by iterating the TQ-
Hurewicz map id → UQ (Definition 1.3) and codegeneracy maps built from the
counit map of the adjunction (Q,U) in the usual way. Taking the homotopy limit
(over ∆) gives a map [11, 25] of the form

(2.2) Z → Z∧TQ = holim∆ C(Z) ' holim∆ C̃(Z)

in AlgO, where C̃(Z) denotes any functorial fibrant replacement functor (̃−) on
AlgO (obtained, for instance, by running the small object argument with respect
to the generating acyclic cofibrations in AlgO) applied to the cosimplicial diagram
C(Z).

Definition 2.1. Let Z be a cofibrant O-algebra. The TQ-completion of Z is the
map Z → Z∧TQ of O-algebras constructed above.

Remark 2.2. The construction of J guarantees that both U and Q preserve cofibrant
objects [25, 5.49]. Hence, UQ(Z) ' TQ(Z), (UQ)2(Z) ' (TQ)2(Z), etc. This shows
the TQ-completion construction is homotopically well defined; weakly equivalent
cofibrant O-algebras have weakly equivalent TQ-completions.

Next, we recall the TQ|NilM -completion construction from [10]. This construction
is very similar to the TQ-completion construction. However, it is only defined for
M -nilpotent O-algebras.

For each n ≥ 1, let τnO denote the operad associated to O where

(2.3) (τnO)[t] :=

{
O[t] for t ≤ n
∗ otherwise

and consider the associated commutative diagram of operad maps [10]

(2.4) O

++

// Jn

∼
��

// J1

∼
��

J

τnO // τ1O

where the upper horizontal maps are cofibrations of operads, the left-hand and
bottom horizontal maps are the natural truncations, and the vertical maps are
weak equivalences of operads; for notational simplicity, here we take J = J1. The
corresponding change of operad adjunctions have the form

(2.5) AlgO
Rn // AlgJn
Vn

oo
Qn // AlgJ
Un

oo AlgO
Q // AlgJ
U
oo

with left adjoints on top, where Rn = Jn ◦O (−), Qn = J ◦Jn (−), Q = J ◦O (−),
and Vn, Un, U denote the indicated forgetful functors; in particular, the adjunction
on the right is the composite of the adjunctions on the left.
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Let n ≥ 1 and define M := n+ 1. Let X be a cofibrant Jn-algebra and consider
the cosimplicial resolution of X with respect to TQ|NilM -homology of the form

(2.6) X // (UnQn)X //// (UnQn)2X
oo ////// (UnQn)3X · · ·

oooo

in AlgJn
, denoted X → N(X), with coface maps obtained by iterating the TQ|NilM -

Hurewicz map id → UnQn and codegeneracy maps built from the counit map of
the adjunction (Qn, Un) in the usual way. Applying the forgetful functor Vn gives
the diagram VnX → VnN(X) of the form

(2.7) VnX // Vn(UnQn)X //// Vn(UnQn)2X
oo ////// Vn(UnQn)3X · · ·

oooo

in AlgO. Taking the homotopy limit (over ∆) gives a map of the form

(2.8) VnX → X∧TQ|NilM
= holim∆ VnN(X) ' holim∆

˜VnN(X)

in AlgO, where ˜VnN(X) denotes any functorial fibrant replacement functor (̃−) on
AlgO applied to the cosimplicial diagram VnN(X).

Definition 2.3. Let Z be an M -nilpotent O-algebra. Choose a cofibrant Jn-algebra
X such that Z is weakly equivalent to VnX as O-algebras. The TQ|NilM -completion
of Z is defined as the map VnX → X∧TQ|NilM

.

Remark 2.4. The existence of X in Definition 2.3 is explained in [10] (see the
discussion following [10, Proposition 2.8]). Moreover, we can make the choice of X
to be functorial, although we do not need the extra property in this paper.

Next, we recall the definition of TQ-localization, as well as the TQ-local homo-
topy theory constructed in [26].

Definition 2.5. Let f : A→ B be a map in AlgO. We say that f is a

• TQ-equivalence if f induces a weak equivalence TQ(A) ' TQ(B) on TQ-
homology.

• strong cofibration if f is a cofibration between cofibrant objects.
• TQ-acyclic strong cofibration if f is a strong cofibration which is also a
TQ-equivalence.

• weak TQ-fibration if f has the right lifting property with respect to every
TQ-acyclic strong cofibration.

Definition 2.6. An O-algebra X is called TQ-local if (i) X is fibrant in AlgO, and
(ii) every TQ-acyclic strong cofibration A→ B induces a weak equivalence

Hom(A,X)
'←−− Hom(B,X)

on mapping spaces in sSet; here we are using the simplicial model structure on
AlgO (see, for instance, [11, 16, 21, 22, 25]). The TQ-localization of X is a map
l : X → LTQ(X) in AlgO such that (i) l is a TQ-equivalence, and (ii) LTQ(X) is
TQ-local.

Proposition 2.7. [26, 5.14] The category AlgO with the three distinguished classes
of maps (i) TQ-equivalences, (ii) weak TQ-fibrations, and (iii) cofibrations (Con-
vention 1.1), has the structure of a (left) semi-model category in the sense of Goerss-
Hopkins [21, 1.1.6].
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For us, the main difference of working with the semi-model structure compared
to full model structures is that (1) we often need to work with strong cofibrations
instead of arbitrary cofibrations, and (2) the factorization axiom for the semi-model
structure only provides functorial fibrant replacements for cofibrant objects.

Remark 2.8. The TQ-local homotopy theory only results in a semi-model structure
instead of a full model structure because the model structure on AlgO (recall Con-
vention 1.1) is almost never left proper, in general (e.g., associative ring spectra are
not left proper); see, for instance, [38, 2.10].

The following proposition will be useful for detecting TQ-local O-algebras.

Proposition 2.9. [26, 5.16] An O-algebra X is TQ-local if and only if the map
X → ∗ is a weak TQ-fibration.

Consequently, the functorial factorization of TQ-local semi-model structure gives
functorial TQ-localization for cofibrant O-algebras [26, 5.17].

3. Homotopy pro-nilpotent O-algebras are TQ-local

In this section, we discuss the relation between TQ-completion and TQ-localization
(Proposition 3.6). After that, we will use a similar strategy to study TQ|NilM -
completion and show that fibrant nilpotent O-algebras are TQ-local (Proposition
3.8). Then, we can prove the main result (Theorem 1.6). As an application, we will
also discuss the homotopy pro-nilpotent TQ-Whitehead theorem (Theorem 1.8).

TQ-localization enjoys most nice properties possessed by general (left) Bous-
field localizations. However, we do want to be careful since the TQ-local structure
(Proposition 2.7) is only a semi-model structure instead of a full model structure.
We list some useful properties below. Some good references for general localization
techniques include [8, 9, 14, 15, 28, 34, 41].

Proposition 3.1. (1) A map X → Y between TQ-local O-algebras is a weak equiv-
alence if and only if it is a TQ-homology equivalence.

(2) If X and Y are fibrant O-algebras that are weakly equivalent, then X is
TQ-local if and only if Y is TQ-local.

(3) The homotopy limit of a small diagram of TQ-local O-algebras is TQ-local.

Proof. (1) and (2) are standard facts about localization; see, for instance, Hirschhorn
[28, 3.2.13, 3.2.2]. (3) is also a standard result for left Bousfield localization. We
spell out the details here to show the proof still works when the TQ-local homotopy
theory only has a semi-model structure.

Note the TQ-local semi-model structure has strictly less fibrations compared to
the original model structure on AlgO. It follows from (1) that the homotopy limit in
AlgO of a small diagram of TQ-local O-algebras is weakly equivalent to its homotopy
limit calculated in the TQ-local semi-model structure. Moreover, the diagram is
already objectwise fibrant with respect to the TQ-local semi-model structure by
Proposition 2.9. Hence, the result follows from the fibrancy property of homotopy
limits in a homotopy theory (in this case, in the TQ-local homotopy theory); see,
for instance, Hirschhorn [28, 18.5.2], together with Ching-Harper [11, 8.9] for a
discussion of homotopy limits in the context of O-algebras. �

For instance, let f : X → Y be a map between TQ-local O-algebras. It follows
from Proposition 3.1 (3) that the homotopy fiber of f is also TQ-local. This is not
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expected to be true, in general, if we replace “TQ-local” with “TQ-complete” (Def-
inition 3.5), and is one of the reasons why TQ-localization is often better behaved
than TQ-completion. See [39] for related discussions.

The following proposition gives our first examples of TQ-local O-algebras.

Proposition 3.2. Let Y be a fibrant object in AlgJ . Then UY ∈ AlgO is TQ-local.
Here, U is the right adjoint of adjunction (1.1).

Proof. By proposition 2.9, it suffices to show UY → ∗ has the right lifting property
with respect to every TQ-acyclic strong cofibration i : A → B. Using the (Q,U)
adjunction (1.1), it is equivalent to show Y → ∗ has the right lifting property with
respect to Qi : QA → QB in AlgJ . This is certainly true since Y is fibrant and
Qi : QA→ QB is an acyclic cofibration in AlgJ . �

The following generalization of Proposition 3.2 will be used in our proof of Propo-
sitions 3.4 and 3.7.

Proposition 3.3. Let Y be any object in AlgJ , then every fibrant replacement of
UY in AlgO is TQ-local.

Proof. Note different fibrant replacements of an object are always related by a zig-
zag of weak equivalences. By Proposition 3.1 (2), it suffices to prove one particular
fibrant replacement of UY in AlgO is TQ-local. Let Y ′ be a fibrant replacement of
Y in AlgJ . Then UY ′ is a fibrant replacement of UY . Now the result follows from
Proposition 3.2. �

Proposition 3.4. Let Z be a cofibrant O-algebra. Then the TQ-completion Z∧TQ of
Z is TQ-local.

Proof. We claim that the ∆-shaped diagram C̃(Z) in (2.2) is objectwise TQ-local;

i.e., that C̃(Z)s is TQ-local for each s ≥ 0. Then we can conclude the homotopy
limit Z∧TQ is TQ-local by Proposition 3.1 (3).

To prove the claimed property, consider Y := Q(UQ)sZ ∈ AlgJ , then UY =

(UQ)s+1Z. Hence, the fibrant replacement ŨY = C̃(Z)s is TQ-local by Proposition
3.3. �

We now discuss the connection between TQ-completion and TQ-localization.

Definition 3.5. Let X be a cofibrant O-algebra. We say X is TQ-good if the
TQ-completion map X → X∧TQ is a TQ-equivalence. We say X is TQ-complete if
the TQ-completion map X → X∧TQ is a weak equivalence.

Proposition 3.6. Let X be a cofibrant O-algebra. Then X is TQ-complete if and
only if (1) X is TQ-good, and (2) the fibrant replacements of X are TQ-local.

Proof. The “if direction” follows from Proposition 3.1(1) and 3.4. The “only if
direction” follows from Definition 3.5 and Proposition 3.1(2), 3.4. �

In the Introduction, we mentioned that the “unit side” of the Francis-Gaitsgory
conjecture amounts to proving for each cofibrant homotopy pro-nilpotent O-algebra
X that X is TQ-complete. So far, none of the known results could work for all
general homotopy pro-nilpotent objects. In Theorem 1.6, we can prove all ho-
motopy pro-nilpotent objects have TQ-local fibrant replacements. By Proposition
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3.6, the remaining open question is that whether cofibrant homotopy pro-nilpotent
O-algebras are TQ-good.

We can use a similar strategy to show TQ|NilM -completion also results in TQ-
local O-algebras.

Proposition 3.7. Let X be a cofibrant Jn-algebra. Then X∧TQ|NilM
constructed

from TQ|NilM -completion is TQ-local.

Proof. This is similar to the proof of Proposition 3.4. The key observation is that

the ∆-shaped diagram ˜VnN(X) in (2.8) is objectwise TQ-local. �

Now we can prove nilpotent O-algebras are TQ-local up to fibrant replacements.

Proposition 3.8. Let Z be a nilpotent O-algebra. Then an arbitrary fibrant re-
placement of Z in AlgO is TQ-local.

Proof. Let Z be M -nilpotent for some M ≥ 2. Choose a cofibrant Jn-algebra
X such that Z is weakly equivalent to VnX as O-algebras (with n = M − 1 as in
Remark 2.4). It is proved in Ching-Harper [10, 2.12] that the map VnX → X∧TQ|NilM

is a weak equivalence. Since Z is weakly equivalent to VnX and VnX is weakly
equivalent to the TQ-local O-algebra X∧TQ|NilM

(Proposition 3.7), the result follows

from Proposition 3.1(2). �

Proof of Theorem 1.6. By definition, the homotopy pro-nilpotent O-algebra X is
weakly equivalent to the homotopy limit of a small diagram of nilpotent O-algebras.
By taking objectwise fibrant replacements for the small diagram, X is weakly equiv-
alent to the homotopy limit of a small diagram of TQ-local O-algebras (Proposition
3.8). Now the result follows from Proposition 3.1(2)(3). �

As a corollary, we obtain the homotopy pro-nilpotent TQ-Whitehead theorem.

Proof of Theorem 1.8. We take a functorial fibrant replacement R as follows:

(3.1) X

∼
��

f // Y

∼
��

RX
Rf // RY

Then f is a weak equivalence (resp. TQ-homology equivalence) if and only if Rf
is a weak equivalence (resp. TQ-homology equivalence). By Theorem 1.6, RX,RY
are TQ-local. Then Proposition 3.1 (1) completes the proof. �

Remark 3.9. Here in the proof of Theorem 1.8, the functorial fibrant replacement
functor R is taken with respect to the positive flat stable model structure on AlgO
(see Convention 1.1 and Remark 1.7). This is a (full) model structure, hence we
do not need to assume X,Y are cofibrant. On the contrary, additional cofibrancy
conditions might be necessary if one works with the TQ-local semi-model structure
(see the discussion following Proposition 2.7).

Previously, TQ-Whitehead theorems have been established for 0-connected and
nilpotent O-algebras separately [10, 25]. However, if one considers a map X → Y
from a 0-connected O-algebra to a nilpotent O-algebra, then none of those TQ-
Whitehead theorems could apply. Now, TQ-Whitehead theorem becomes applicable
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to X → Y since 0-connected O-algebras and nilpotent O-algebras are all homotopy
pro-nilpotent [25, 1.12].

We also want to point out that Goodwillie calculus [23, 31] provides a class of
naturally occurring examples that are homotopy pro-nilpotent but are, in general,
not 0-connected nor nilpotent.

As explained in [25, 1.14], up to weak equivalence, the Taylor tower for a cofibrant
O-algebra X has the following form:

(3.2)
...

��
τ3O ◦O X

��
τ2O ◦O X

��
X //

::

DD

τ1O ◦O X

where τkO is the operad defined in (2.3). By definition, τkO ◦O X regarded as an
O-algebra is (k + 1)-nilpotent. Therefore, the Taylor tower of the identity functor
on AlgO always converges to homotopy pro-nilpotent O-algebras. Also see [13, 30,
35, 40] for related discussions.
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186:169, 1990.

[21] P. G. Goerss and M. J. Hopkins. Moduli problems for structured ring spectra. preprint, 2005.
Available at https://sites.math.northwestern.edu/~pgoerss/spectra/obstruct.pdf.

[22] P. G. Goerss and J. F. Jardine. Simplicial homotopy theory, volume 174 of Progress in
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1995.
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