THE SECONDARY PERIODIC ELEMENT f2,,: ; AND ITS APPLICATIONS
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ABSTRACT. Let p > 7 be a prime. We prove that sz/p271 survives to Foo in the Adams-
Novikov spectral sequence. Additionally, using the Thom map ® : Extg’;*BP(BP*, BP.) —

E:ctj;’*(Z/p, Z/p), we can see that hohs also survives to Foo in the classical Adams spectral
sequence. As an application of these results, we prove that Bg/p is divisible by ;.

1. INTRODUCTION

Let p be an odd prime. The Adams-Novikov spectral sequence (ANSS) based on the Brown-
Peterson spectrum BP is one of the most powerful tools to compute the p-component of the
stable homotopy groups of spheres 7., (S%) (cf. [1, 9, 13, 25]).

The Es-term of the ANSS is Extg;*BP(BP*7BP*), which has been extensively studied in
low dimensions. For s = 1, Ext}é}*BP(BP*,BP*) is generated by appn/pq1 for n >0, p{ k
with & > 1, where ajyn /41 has order p™*! (¢f. [15, 13]). For s = 2, Ezté*P*BP(BP*,BP*) is
the direct sum of cyclic groups generated by Biyn ;41 for suitable (n,k,j,7) (cf. [13, 25, 26]),
Brpn /4,i+1 has order pi*t1. For s > 3, only partial results of Ext%;;*BP(BP*, BP,) are known (cf.
14)).

To compute the stable homotopy groups of the sphere, we still need to know which elements of
the Ey-page could survive to the E..-page of the ANSS. It is known that each element a,n /41
is a permanent cycle in the ANSS which represents an element of ImJ with the same order.
Moreover, Behrens [4] shows that, for [ a prime which generates Z,', the spectrum Q(!) introduced
in [2, 3] detects the a and § families in the stable stems. However, we are still far from fully
determining which elements of the Sj,n /; ;41 family could survive to Ee.

Let Bipn/; denote Bypn ;1. H. Toda [29, 30] proved that a1/ is zero in 7, (S9). This relation
supports a non-trivial Adams-Novikov differential called the Toda differential

(1.1) d2p—1(ﬁp/p) =a- alﬁf #0

where a is a non-zero scalar mod p. Hence f3,/, could not survive the ANSS.
Based on the Toda differential (1.1), D. Ravenel [22] generalized the result and proved that
there are nontrivial differentials

dap—1(Bpnjpn) = @011 )pnn, mod  ker gre" =0/ e=n)

for n > 1. Consequently, By, also can not survive to Eo, in the ANSS. From this one can see
that only fBy,n,; € H*(BP,) for k> 2,1 <j<p"ork=1,1<j<p"—1 might survive to E
in the ANSS. The following are some known results in this area:
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Let p > 5. Oka proved that: (a) For k=1, 1 <j<p—1lork =2 1<j<p, Biy, are
permanent cycles in the ANSS (see [16]). (b) For k=1,1<j<2p—2o0rk >2,1<j < 2p,
Brp2/j are permanent cycles in the ANSS (see [18]). (¢c) Forn >2,k=1,1<j<2" (p—1)
orn>2k>21<j<2" p, By, ; are permanent cycles in the ANSS (see [20, 21]).

Let p > 7. Shimomura [28] proved that for k > 1,1 < j < p* — 2, Brp2/; are permanent cycles
in the ANSS.

In this paper, we prove:

Theorem A Letp > 7 be a prime. Then B2 /p2_1 is a permanent cycle in the Adams-Novikov
spectral sequence.

We can briefly summarize our strategy to prove Theorem A as follows. Inspection of degrees
shows that (3,2/,2_1 has too low a dimension to be the target of an Adams-Novikov differential.
Hence it suffices to prove (2,21 does not support any nontrivial differential. We work with
the small descent spectral sequence (SDSS), which converges to the Es page of the ANSS. Com-
putation shows that in dimension one less than that of 3,2,,2_1, the SDSS has 8 elements listed
in Lemma 3.1, each must be eliminated as a possible target of a differential on 3,2 /,2_;. Two of
them are removed by dis in the SDSS as shown in Figure 1, leaving the six listed in Theorem
3.2. Four of them are removed by dl2p718 in the ANSS as shown in Figure 2. This leaves only
g7 and gs. They each lie in filtration 3, so they cannot be the target of an ANSS differential on

By 1.

Assumption on prime p. Henceforth, in this paper, it is always implicitly assumed that p > 5,
unless stated otherwise.

Let M be the mod p Moore spectrum and M(1,p™ — 1) be the cofiber of the map vfn_l

p"—1

SM s M —— M(1,p" — 1).

D. Ravenel ([27] Theorem 7.12) claimed that if M(1,p"™ — 1) is a ring spectrum and By /pn_1 is
a permanent cycle, then Bj,»/; is a permanent cycle for all £ > 1, j <p" — 1.

Between the ANSS and the classical Adams spectral sequence (ASS), there is the Thom
reduction map

®: Extpp, pp(BP, BP.) — Ext)y(Z/p,Z/p)

such that ®(Byn /pn—1) = hohpy1. Thus we obtain the following corollary.

Corollary B Let p > 7 be a prime. Then hohs is a permanent cycle in the classical Adams
spectral sequence.

In [6], R. Cohen and P. Goerss claimed the existence of hohy4+1 in the classical ASS. One
can see that the existence of hohy,q1 in ASS is equivalent to the existence of Byn/pn_1 in the
Adams-Novikov spectral sequence. But N. Minami found a fatal error in their proof, so it is
still an open problem in odd primary stable homotopy theory. Due to its extreme importance,
M. Hovey [7] listed the convergence of hoh,+1 as one of the major open problems in algebraic
topology.

Consider the ANSS for the Moore spectrum Extpy pp(BP,, BP,(M)) = m.(M). From the
Toda differential, one can see that in the ANSS for the Moore spectrum

d2p71(hn+2) ZUlﬁﬁn/pn, d2p71(vlhn+2) :,U%ﬁ;)n/pn‘

Applying the connecting homomorphism § : Emt}é};*BP(BP*, BP.(M)) — Exté;;* pp(BP.,BP,)
induced by the cofiber sequence

S0 L>80 M
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one gets an Adams differential in the ANSS for sphere
dop—1(Bpnt1 jpnt1_1) = aQﬂgn/pn‘

In Section 6, we prove that ﬁg/p is divisible by 81, i.e. ﬁg/p = B1g. Note as3; = 0, this

provides another perspective for understanding why we could have
dop—1(By2p2-1) = @28, =0 in Extils p(BP., BP.).

in Theorem A.
Based on the analysis of ﬂ;’ Jpr We conjecture that:

Conjecture C Forn <p—1, Bgn/pn is divisible by B1 and

ﬂg/p = Brh11bhy e
522/172 = 51h21h11b§a453

Bgn/p" = Blhn,lhn—l,l ce hllb‘fl__‘r?zfagiﬁz)
B§P72/pp72 = 61hp_271hp_371 - hlloéz(,p,)l
where o™ *2) is the (n+2)-th letter of the Greek alphabet, and agff) c Eﬂ%ﬁgp(BP*, BP,) is

one of the (n+ 2)-th Greek letter family elements. These equations imply aw Z"/p" =af1g=0

forn <p—1.

Forn > p—1, we conjecture that ﬁgn/p” s not divisible by 1 and agﬂgn/pn might be non-zero.
This implies that Bynt1 jpnt1_1 does not survives to Eo in the ANSS whenn > p — 1.

This paper is arranged as follows. In section 2 we recall the construction of the topological
small descent spectral sequence (TSDSS) and the small descent spectral sequence (SDSS), where
the SDSS is a spectral sequence that converges to Ext‘z;';*BP(BP*, BP,) started from the FEuxt
groups of a complex with p-cells. Then we describe the Fj-terms of the SDSS in the form of
a Generator, total degree ¢t — s and t — s mod pg — 2, and range of the index. This gives a
method to compute the Fy-page of the ANSS with specialized ¢ — s. In section 3 we compute the
Adams-Novikov Fs-term Ext%’i;*BP(BP*, BP,) subject to t — s = q(p® + 1) — 3 by the SDSS. In
section 4, a non-trivial Adams-Novikov differential da,—1(hoob117s) = 187 hagys is proved. We
prove our main theorem by showing that d,(8y2/,2—1) = 0 in section 5. At last, in section 6, we
prove that Bg Ip is divisible by 1 and give our conjecture.

Acknowledgments. The second and third named authors were supported by the National Nat-
ural Science Foundation of China (No. 12271183). The third named author was also supported
by the National Natural Science Foundation of China (No. 12001474; 12261091). All authors
contribute equally.

2. THE SMALL DESCENT SPECTRAL SEQUENCE AND THE ABC THEOREM

In 1985, D. Ravenel [23, 24, 25, 26] introduced the method of infinite descent and used it to
compute the first thousand stems of the stable homotopy groups of spheres at the prime 5. This
method applies a so-called small descent spectral sequence (SDSS) to identify the Fs-terms of
the ANSS.

Hereafter we set that ¢ = 2p — 2. As mentioned in the Introduction, we assume that p > 5 is
a prime number throughout this paper. Let T'(n) be the Ranevel spectrum (cf. [25] Section 5,
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Chapter 6) characterized by
BP,.(T(n)) = BP.[t1,ta, - ,tn].

Then we have the following diagram

59 = T(0) T(1) T(2) . T(n) . BP

9

where SY denotes the sphere spectrum localized at p. Let T(0),—1 and T'(0),,—2 denote the g(p—1)
and q(p — 2) skeletons of T'(1) respectively, they are denoted by X and X for simple. Then

X =5%Uq, e9U--- Uy, ey, eP~ba and X =5"Uq,, e7U - Uy, e,
The BP-homology of them are
BP,(X) =BP.[t1]/(t]) and BP,.(X) =BP. [tl]/(tffl).

From the definition above we get the following cofiber sequences

(2.1) 0o x T oyax Mo g

(2.2) v x L> S(p—1)g LA vX,

and the short exact sequences of BP-homologies

(2.3) 0 — > BP,(S%) —*~ BP,(X) —2~ BP,(£9X) — >0,
(2.4) 0 — > BP,(X) —> BP.(X) —2> BP,(S@®11) — 0,

Put (2.3) and (2.4) together, one has the following long exact sequence
(2.5) 0 — BP.(S8) —= BP.(X) —= BP.(29X) — BP,(¥P1X) — - -
Put (2.1) and (2.2) together, one has the following Adams diagram of cofibres

(2.6) SO« ya-lyx Spa—2 np+)e-3% - ...
X »a-lx »Pa-2X np+a=3x,

Proposition 2.1. (Ravenel [25, Proposition 7.4.2]) Let X be as above. Then
(a) There is a spectral sequence converging to ExtSB"E’EP(BP*, BP.(S%) with E1-term
E}" =Fatyp pp(BP., BP.(X)) ® Elaq] ® P[B1],  where
By = Eatyly pp(BP., BP(X)), o € BP0 By e B

and d, : E$YY — ESTrHLLuET o Where E[—] denotes the exterior algebra and P[-]
denotes the polynomial algebra on the indicated generators. This spectral sequence is
referred to as the small descent spectral sequence (SDSS).
(b) There is a spectral sequence converging to m.(S°) with E;-term
EYY =m.(X) ® E[ay] ® P[B1], where
BV =m(X),  are€BpY,  ppeEPT

and d,. : B3t — E3trt4r=1 " This spectral sequence is referred to as the topological small
descent spectral sequence (TSDSS).
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The two spectral sequences mentioned above could determine the 0-line and the 1-line (namely
Extly, pp(BP,, BP.(S°)), Extyy pp(BPy, BP.(S°))) or the corresponding elements in 7 (S°)
by Extyy pp(BPy, BP.(X)) and Extyy pp(BP., BP.(X)). Additionally, for s > 2, the s-
line Extyp pp(BP., BP,(S%)) or the corresponding elements in 7,(S°) are produced by the
corresponding elements in Ext}, 5p(BPy, BP.(X)) with s > 2 as described in the following
ABC Theorem [26, Theorem 7.5.1].

Theorem 2.2 (ABC Theorem). Fort—s<q(p>*+p—1)—3, s>2
Extyp pp(BP.,BP.(X)) =A@ Ba&C,
where A is the Z/p-vector space spanned by
{Bip, Bip+1li <p— 13U {Bpaypel0 <j <p—1},
B=R®{yli > 2}
where
R = P8y ® Elhao] @ Z/p {{b}110 <k <p—1} U{h1b5l0 <k <p—2}},
and
oSt — @Rs+2i,t+i(p2—1)q_
i>0
We list the bidegrees of the various elements appearing in the ABC Theorem as follows:
Bip € Emthhpz-i_ip_l]aﬁiwrl € ExtQ’q[ip2+(i+1)p]7 sz/pzfj € Ext27q[p3+j]a

;€ ExtS’qmp?er“)*p*z],h11 € ExtV P hyy € Bxtb1®tD) p ) € EastQ’qp2,b20 c Ext2w®+1)
From the ABC Theorem above, we can find all generators of Emt%;i,*BP(BP*, BP,(X)) for

s>2,t—s5<q(p®+p—1)—3. Table 1 summarizes the first class of generators, namely the
generators of A.

Generators of A | t — s and t — s mod pg — 2 | Range of index
Bip qlip® +ip —1] — 2
=200 —1)p+2i ifi<p—2
=0 ifi=p—1
Bip+1 qlip® + (i + 1)p] — 2
= 2ip + 2i ifi<p—2
52£2p ifir=p—1
B2 /p2—; qlp® +j] -2
E2(j—|-1)p—2j2p if j<p—2
=4 if j=p—1

TABLE 1. Generators of A

Here, pg — 2 = 2p® — 2p — 2 is the total degree of 8; € EY' ™2 in the SDSS. The reason for
computing ¢t — s mod pqg — 2 and the purpose of underlining certain values will become clear in
Lemma 3.1.

The generators of B are summarized in Table 2.

| Generators of B | t — s and ¢ — s mod pg — 2 \ Range of index |
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h11b5qi qi+k)p?>+ (i+k)p+i—2] for2<i<p-1,0<k<p—2,
—2k —4 and 2<i+k<p—1
=2(k+2i—2)p ifk+2i<p
=2k+2i—p—1)p+2 if k+2i >p
haoh11b5 s qdli+k)p?*+ (G +k+Dp+i—1] [for2<i<p—-1,0<k<p—2,
—2k —5 and2<i+k<p—1
=2(k+2i—1)p—1 itk+2i<p
=2k+2i—-pp+1 itk+2i>2p
bE i qi +k)p? + (i — Dp+i—2] for2<i<p-—1,0<k<p—1,
—2k —3 and 2<i+k<p—1
=2(k+2i—2p—2k—1 ifk+2i <p+1
=1 ifk=0,2=p+1
=2k+2-—p—lp—2k+1 . ifk+2i>p+2
haob¥ i g+ k)p* +ip+i—1] for2<i<p-1,0<k<p—1,
—2k —4 and 2<i+k<p—1
=2(k+2i—1)p—2(k+1) ifk+2i<p
52(k+2i—p)p—2k2p ifk+2i>p

TABLE 2. Generators of B

Let us take hublgo'yi from the B-family as an example to illustrate the calculation.
The total degree of hy1b5,7; is

i+ E)p*+ (i +k)p+i—2]—2k—4=20+k)p*> -2k +2)p—2(i + k)

for 2 < i < p—1,0 < k < p—2 To ensure that the total degree of hi1b5,y; is less than
q(p® +p—1)—3, we need i + k < p. Straightforward computation shows

200+ k)p> —2(k +2)p—2(i + k) =2(k+2i —2)p mod pq—2
Notice that 2(k + 2i — 2)p > pg — 2 if k + 2i > p, the total degree of hy1b5,7; is
2k+2i—2)p—(pg—2)=2(k+2i—p—1)p+2 mod pqg—2

if k+2i > p.
One might have noticed that although R contains the P[b%,] part, P[b5,] doesn’t show up in
the B-family generators. This is because the total degree of b5, is

plap(p+1) = 2) > q(p’ +p—1) -3

Hence, suppose a generator of B is a multiple of b, its total degree would exceed the range of
interest.

On the other hand, the P[b%,] part does show up in the C-family generators. The key difference
is that C is the direct sum of shifted copies of R. Based on [23, Theorem 4.11, 4.12], we could
determine all generators of C.

In more detail, let us write i = jp + m, with 0 < m < p — 1. Consider the i-th shifted copy
Rs+20t+i(0°~1)a © Ot we have:

(1) BGTIP € RAp=m)+2(iptm) t+(iptm)(p*~1)a « C2(p=m)t which is represented by

p—m—1
bao Ujp+m
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forp—12>m > 1, where
Ujptm € C2:4[G+DP*+(G+m+1)p+m]
From this, we get generators of the form
Bho ™ jpim ® Elhoo] @ {5110 <k < p— 1} U {h11bhy|0 <k <p—2}
(2) biabag € R2(k=m)+20Gptm) b+ (jptm)p* ~Da o ¢2(k=m).t which is represented by

k—m—1
b1 ™ B+ 1)p/p—m
forp—1>k>m+12>1, where

Bii+1)p/p—m € CAGHIP Fiptm],

From this, we get generators of the form
bllfl_m_lﬂ(j+1)p/p—m & E[hQO]a

o Especially hyob?7'biE € R3+2Uptp=2).t+(iptp=2)(p"~1a < O3t ig represented by
h11B(j+1)p/1,2, which is an element of order 2.
(3) hyybkyblk € R2E—m)H1+2Gptm). it (ptm)(v*~1)a « c2(k=m)+1¢ which is represented by

byo " Njprmt
forp—2>k>m+12>1, where

. 2 .
Nipsmst = h11Ujpm € CHAGHIP G +mEDptm]

(4) hoohy bEbEE € R2F—mAD)+2(ptm) t+(ptm)(p*~Da  c2(k=m+1t which is represented
by
bIQC()_m/ij+m+2
forp—2>k>m >0, where
Biprmaz € 243 +(G+mA2)prm+1]
e Especially haohi1bby 2bih € R2H20ptp=2),t+(iptp=2) (" ~1)a ¢ O2¢ ig represented by
B(j+1)p/1,2, Which is an element of order 2.

The generators of C are summarized in Table 3.

Generators of C t—sand t — s mod pg — 2 Range of index
VOB ™ iy m gllp—m+j+k+Dp?>+jip+m] | for I<m<p,0<j<p—2,
—2(p—m+k) and 0<k<p,j+k<m
=2+k+1)p+2(i—k+1)
haob$1 05" jpam | allp—m+j kDR +(G+Dp | for I<m<p0<j<p-2,
+m+1]-2(p—m+k)—1 and 0 < k<p,j+k<m,
and j+k<p—3
=2+ k+2p+2(—-k+1) -1 itj+k<p—14
orj+k=p—3,2j<p-—>5
=2(j—k+2)p—1 ifj+k=p—-3,2/>2p—5
P b P gllp—m+j+k+1)p>+ (G +k forT<m<p,0<j<p—2
+p+m|—-2(p—m+k)—1 and0<k<p—2,j+k<m,
and j+k<p—3
=2+k+2)p+2(j—p) +3
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k+p—m—1
haohi1bs Wjptm

gdlp—m+i+k+1)p>+(G+k
+2)p+m]+2(m —k —2)

=2(+k+2)p+2j+2
=27+4

forI<m<p,0<j<p—2

and 0<k<p—2,+k<m,
and j+k<p—3
ifj+k<p—4
ifj+k=p-—3

k—m—1
b1y 5(j+1)p/p7m

ql(j +k —m)p* + jp +m]
—(2k — 2m)
=20 +k)p+2(j — k)

E2(j+k—p+1)p+2(j—k+1)2p

forl<m+1<k<p,
and 0<j<p—2
ifj+hk<p—2
orj+k=p—1,2j<p—1
ifj+k>2p
orj+k=p—-1,2>p—-1

h20b]1€17m715(j+1)p/p—m

ql(G+k—m)p>+ (G +Dp+m
+1] — (2k — 2m + 1)

=2 +k+1)p+2(j —k)— s

=2j+k—p+2p+2(j—k)+1

forl<m+1<k<np,
and 0<j<p—2
ifj+k<p-3
orj+k=p—2,2j<p—3
itj+k>p—2
orj+k=p—2,2j>p—3

hl,lﬂ(j-‘,—l)p/l,?

for0<j<p—2
ifj<p-3
ifj=p—2

k—m—1
boo" Mjptm+1

ql(G +k—m)p* + (G +k+1p

+m| — (2k —2m +1)
=2+kp+25+1
=2(j+k—p+2)p

20 -p)+3, .

forl<m+1<k<p-—2,
and 0<j<p—2
ifj+k<p—2
ifj+k>p—2

k—m
b2,0 ﬁjp+m+2

ql(G+k—m)p* + (G +k+2)p
+m+1]—-2(k—m+1)
E2(j+k+1)p+2j2p

=2 +k—p+3)p+2(j—p) +2
=0

for0O<m<kLp—2,
and 0<j<p—2
ifj+k<p-3
ifj+k>p—3
ifj=k=p—2

Bii+1yp/1,2

dG+1)p°+(G+p—1 -2
=2jp+2(j+1)
=0

for0<j<p—2
ifj<p-3
ifj=p—2

TABLE 3. Generators of C

Remark. The Adams-Novikov spectral sequence for the spectrum X collapses from Es-term
Extsézj*BP(BP*, BP,(X)) in the range t — s < ¢(p* +p—1) — 3, since there are no elements with
filtration > 2p. Thus we actually get the homotopy groups m;_4(X) in this range.

3. THE ANSS E5-TERM Eatyy pp(BP.,BP.) AT t —s=q(p® +1) — 3

Consider the Adams-Novikov differential d, : ES' — EST"=1 in the ANSS. From the
total degree of Bp2/p2_1, we know that d,(Bp2/p2_1) € Ext‘;g’;*BP(BP*, BP,) such that t — s =
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q(p®+1) — 3. The SDSS E}"" converges to Exty s p(BP., BP,). Fixt—s—u=q(p> +1) -3,
we have:

Lemma 3.1. Fizt — s —u = q(p® + 1) — 3, the Ey-term E}Y" of the SDSS is the Z/p-module

generated by the following p—z& generators:
o ap?ed F2207 -1, _ p2—ph 320" =2p,
g1 —041/61 B2 € 1 ) g2 —61 20/817/17 € Ly )
p2—2p—1 2 p2—6p+1 2
4,%,p°—2p, _ 2 7,%,p°—6p+1,
gs =a1fy * haoyess € BT T ga =By 7 bhyen € BT TP
—1 p—1
_ o pmp=Pr= Pom—m p+1—2m, %, —pp-1 3.%,2p=2.
g5,m =015, ? byt ﬁ(%ﬂ)p/p_m € k] i 86 =0 Np—3)p+3 € E; ;
_ 2,q(p°+1),1, . 2,q(p®+1),1
a7 _alﬁ(pfl)erl € El ’ gs _alﬁpz/pZ € El .

The index range for m in gsm s 0 <m < %.

Proof. Fix t —s—u = q(p®+1) — 3. From the ABC Theorem, we know that the generators of the
Ej-terms in the SDSS are of the form W = Bfw or W = a1 88w, where w is an element listed in
the ABC Theorem.

1. If a generator of E{""" is of the form W = S¥w, then the total degree of fPw is q(p®+1) —3
and the total degree of w is ¢(p® + 1) — 3 modulo the total degree of 31 which is t —u = qp — 2.
Note that

q(p> +1)—3=4p—3 mod qp — 2,
we list all the generators whose total degree might be 4p — 3 mod gp — 2, which are marked with
underline and subscript 4p — 3 in Table 1, Table 2 and Table 3.

bY1 i at k=2and i = (p+1)/2;
h20b]1€17m716(j+1)p/p7m at k=1 and j = 0;
bgo_m_lnjp+m+1 at k=3 and j =p—3.

From which we get the following generators in E{""":

2 _6p+1 2
2 L 2 7,%,p2—6p+1,
bll’Y# = ga=p5 ° b11’7PT+1 e By TP
2 3,%,2p%—2
hQOﬂp/p - g2 = 5{) thOBp/p € E] P p;
_ pp—1 3,%,2p—2
N(p—3)p+3 = 96 =B Np-3)p+3 € Ey .

2. If a generator of Ef’t’“ is of the form W = a;¥wy, then from the total degree of a; being
t —u = 2p — 3 we see that the total degree of w; is 2p modulo gp — 2. Similarly, we can find all
such w;’s, which are marked with underline and subscript 2p in Table 1, Table 2 and Table 3.

p—1

5(p—1)p+1§ /Bp2/p2; hQOV%; b112 7mﬁ(%+1)p/p,m§ Ba.
From which we get the following generators in E{*"":
97 =a1Bp-1)p+1; g8 =182 /p2;
p272p—1 p—1 _ p— 1
s =By haovesi Gsm =BT bF By 0 S M S S

2_
g1 =187 "' .

Computing the filtration of the corresponding generators, we get the lemma. (|
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Remark: The method in proving Lemma 3.1 is a general method in computing the F;-term

EY™ of the SDSS with specialized ¢ — s — u.

Theorem 3.2. Fizt—s=q(p®+1)— 3, the Adams-Novikov Es-term Ext%’}*BP(BP*, BP,) is

the Z/p-module generated by the following 6 elements

2 2
_ p°—1 2p7+1,%,
g1 =a1 5] B2 € EIth*BP»

p2—2p—1 p2—6p+1

2_opt4, 2 2 —6p+8,
g3 :alﬁl 2 h270’}/p42r1 € Ea:t%P*g; *, g4 :Bl 2 bll’}/p;rl S Ext%])*gp *,
-1 o2p+1, |
96 =B Np-s)p+3 € Exlyp fpi
3 3
g7 =1 1)pi1 € Bat> 1P+, 05 =au1 e pe € Bt 10D,

Proof. Following D. Ravenel [25] page 287, we compute in the cobar complex of N¢ = BP,./(p>°,

VP 1 Uﬂ’
d ﬁ(m -t pf} th @t + ——bio,
1 vy
s VIP QU DpHL viP
—d| 2t | =—- ot — j 22—t @t1 + 2t @ 1y,
<P P pvy ! pu1 ! pu1
(3—-1)p U~ Dt Jp
v v 2 v
d(]“'t ) —jitp Rt —j2—t @y,
pU1 pur puy

(- 1)/ (p]p ) —(G-1) Jpn@tl

A straightforward calculation shows that the coboundary of

IP IP Jp+1 v(j—l)pv3 ]P
2 tgfitp+1f p+1t1+] 2 tl (]71)/2
pvy pvy pUy
Jp vIP
is 1)271 b19. Then from 66 Z# = Bjp/p> We get a differential in the SDSS
1 1

d2(h205jp/p) = 6151’1)/1)—1'
Similarly, we have
(3.1) da(h20Bjp/i) =B1Bjpji—1 for 2 <4 < p.
Applying formula (3.1), we get the following differentials in the SDSS

da(g2) = do(BY PhaoBysp) =B P Byp1,

1,22t m —m
by hQOB(%)p/p_m_H) =a1 3, P—5 b B(”T“)p/p—m = g5,m,

mp— =L
d2(alﬂ1 2

which are illustrated in Figure 1. Then the theorem follows.

4. A DIFFERENTIAL IN THE ANSS

This section is aimed at showing that

(4.1) dap—1(haob117s) = a1 8y haovs

in the Adams-Novikov spectral sequence. This differential could imply the vanishing of g3.

vi%)
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S+ u
0*91 °
goe
gse
ga@

g5m .W

gee

O

3 greeds
5172/132*1

0 q(p® +1) -4 q(p® +1) =3 qp®+1)-2 t-s—u

FIGURE 1. Two SDSS d, differentials

We begin from showing that 7g(p242p12)—2(V(2)) = 0. From which we show that the Toda

bracket (a151,p,7s) = 0 and the Toda bracket (alﬂffl, a101,p,7s) is well-defined. Then from
the relation

<a15f_1a alﬂlvpa 7€> = O‘lﬁf_thO'Ys = /Bp/p—178

in m,(5°) and d(haob11) = B1By/p—1, we get the desired differential in the ANSS.
Let p > 7 and V(2) be the Smith-Toda spectrum characterized by

BP,(V(2)) = BP,/Is

where I3 is the invariant ideal of BP, = Zy)[vi, v, - ,v;,- - -] generated by p,v; and vo. To
compute the homotopy groups of V(2), one has the ANSS {E$'V(2),d,} that converges to
(V' (2)). The E3-page of this spectral sequence is

E3'V(2) = Extyyy, 5p(BP., BP.(V(2))

Let
I'=BP,/I3®pp, BP.BP @pp, BP./I3 = BP,/I3[t1,ta, - -].

Then (BP./I3,T) is a Hopf algebroid, and its structure map is deduced from that of (BP,, BP,(BP)).
By a change of ring theorem, one sees that

Extyy pp(BP., BP.(V(2))) = Exty'(BP,, BP./I3) = m.(V(2))
Lemma 4.1. The q(p* + 2p + 2) — 2 dimensional stable homology group of V(2) is trivial, i.e.,
Ta(p>+2p+2)—2(V(2)) = 0.
Proof. Fix t — s = q(p* + 2p + 2) — 2, we know that the Adams-Novikov E,-term
Batyy 02 =2(pp, BP,(V(2))) = Exty 0 +242=2(gp_ Bp, /1)

converges to Tq(p212pt+2)—2(V(2)). We will prove that mg(p242p12)—2(V(2)) = 0 by showing that
$,5+q(p° +2p+2)—2 —
Extgp pp (BP.,BP.(V(2))) =0.
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In the cobar complex CfBP, /I3, the inner degree of v;, |v;| = |t;| = q(p* + p* + p + 1) for
i > 4. It follows that in the range t — s < q(p* +p*> +p+1) — 1,

Extyp pp(BP., BP,/I3) = Exty'(BP,, BP,/I3) = Exty/ (BP,, BP,/I3).
where IV = Z /plvs][t1, ta, t3]. From ng(vs) = vs mod I3, we see that

Eztz/p[v3][t1,t2 t3](BP*7 BP,/I3) = Ezt%/*p[tl to ts](Z/pa Z[p) ® Z/plvs].

To compute the Ext groups Exti/p[tht”s] (Z/p,Z]p), we can use the modified May spectral
sequence (MSS) introduced in [10, 11, 12, 26].

There is the May spectral sequence {Es t* §,} that converges to EJth/p[t1 t2.ts] (Z/p,Z/p).
The FE;-term of this spectral sequence is

(4.2) E*** = Elhi;|0<j,i=1,2,3]®@ P[b;;|0 < j,i=1,2,3],
where
hi; EEl ,q(1+p+--4p'~1)p? 2i—1 and bi; €E2 a(14p+--4p'~H)p/ T p(2i— D
The first May differential is given by
(43) 51(hi,j) = Z hifk,k+jhk,j and 51(171"]') =0.

0<k<i

For the reason of the total degree, to compute Ext} é+(q(p T202)=2)(Bp, BP,/I3) we only
need to consider the sub-algebra generated by hsg, hog, h10, h21, hi1, h12 and bog, b1g, b11, i.e. the
subcomplex

[hl.]'l 1,1+ 7 < ]®E[b207b11}®P[bm].
From (4.3), we know that within ¢ — s < ¢(p? + 2p + 2) — 2 the May’s FEa-term
E;’*’* ZHS’*’*(ET’*’*,(Sl) ZH*’*’*( [h11|0 7,04+ < ],51) ®E[b20,b11] ®P[b10].

H. Toda in [31] computed the cohomology of (E[h;;|0 < 7,7+ j < 3],01). Here we only jot down
the even-dimensional elements within that range.

haohio, q(p+2) —2; haohi1, q(2p+1) —2;

hizhio, q(p* +1) —2; haihii,  q(p* 4 2p) — 2.
Thus within ¢t —s < ¢(p?+2p+2) —2, the even dimensional May’s Ey—term E;t* is a sub-algebra
of

Z/p{1, haohio, haohi1, highio, harhi1} @ Elbag, bi1] ® Plbio].
Suppose we have a generator y in Ewt%fg[giﬂtfffz) 2(BP BP,/I5). Then y is the form of
x or vz where z is an even dimensional generator in H*(E[h;;|i + j < 3]) @ E[bo, b11] @ Plbio)-

(1) If y = vz, then = € Eg’t’* subject to t —s = q(p+ 1) — 2. An easy computation shows
that the corresponding Fo-term is zero.
(2) If y = x, then z € Ey"* subject to t — s = q(p? + 2p + 2) — 2. Similarly, from

q(p® +2p+2) —2=6p — 2 mod qp — 2
we compute that the total degree ¢ — s mod gp — 2 of the generators in
Z/p{1, haohio, haohi1, hi2hio, h21hi1} ® [bao, b11]

and find none of them is 6p — 2. Thus the corresponding Fs-term is zero.
The lemma then follows. ]

It is easily shown that the following theorem holds from the lemma above.
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Theorem 4.2. Forp > 7, s > 1, the Toda bracket {c151,p,7s) = 0.
Proof. Let v3 be the composition of the following maps

S +p+1) L s+ (2) s 1(2),
where the first map is the inclusion map to the bottom cell.

It is known that v3 is an order p element in 724 p41)(V(2)). Thus the Toda bracket
(a1B1,p,v3) is well defined and (a181,p,03) € Typ2yoptr2)—2(V(2)) = 0. It follows that the
Toda bracket (a;81,p,vs) = 0.

Let j : V(2) — S9+2)+3 he the collapsing lower cells map from V/(2), then v, = vz -v5 ' - 5.
As a result,

Il
o

<04151»p7 ’YS> = <a1517p7 53 : ,U§71 5> = <a1ﬂ13p7:53> : ’U§71 +J
because (a181,p,03) = 0 € Typry2p42)-2V(2) = 0. O

Proposition 4.3 (also see [25] Proposition 7.5.11). For p > 7, s > 1, the Toda bracket
<a1,3f71,a1,81,p, vs) s well defined in . (S°), and

a1 haoys = (a1 By a B, p, ) = Bp/p—17s-

Proof. From (87!, a1 1,p) = 0, {(a1B1,p,a1) = 0, (a1, a1581,p) = 0 and (a1 81,p,7s) = 0, we
know that the following 4-fold Toda bracket is well-defined and

Bp/p—1 = BV, a1 B1,p, ar); arhaoys = (a1, 01 1,0, 7s)-
On the other hand, one has

B anhaoys = BY o, 1B, by s
(a1 B, a1 B, p, s
ar(BY a1 B, p. s
(8P, 1B, p, a1ys

= (BN B, p, ) s
= ﬁp/pflr}/s

)
)
)
)

The proposition follows. O

Theorem 4.4. Forp > 7,2 < s < p— 2, we have the following Adams-Novikov differentials
dop—1(h2,0b1,17s) = 187 ha 0Ys.

Proof. Note that b11 = 3,/,. Then from (3.1) one has the differential in the small descent spectral
sequence

d2(h20b11) = 615})/1)—13
which could be read as d(haofBp/p) = B18p/p—1 and d(haofy/pys) = BiPp/p—17s in the cobar
complex of BP, or equivalently the first Adams-Novikov differential in the ANSS. Then from the
relation f3,/,_17s = o187 M hagys in . (S°) and Bp/p—17s = 0 in Ext%}kp*BP(BP*,BP*)7 we get
the Adams differential in the ANSS
dap—1(haobi17s) = B1 - BV Larhaoys = a1 B haos.

The theorem follows. O
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5. THE PROOF OF THEOREM A

In this section, we prove our main theorem which states that 3,2/,2_; survives to E in
the ANSS. Note that 3,2/,2_; has too low a dimension to be the target of an Adams-Novikov
differential, we will do this by showing that all the Adams-Novikov differentials d,.(3,2/,2_1) are
trivial.

Lemma 5.1. Let i # 0 mod p. In the ANSS, one has the following Adams-Novikov differential
dap—1(n:) = BY Bit1
Proof. Recall from [25] 7.3.11 Theorem (e), in the SDSS
Ei = Ext}yy pp(BP., BP.(X"" 1) @ E[hn] ® Plbi1] = Eatiyl pp(BP,, BP.(X)),

where BP*(XPQ*I) = BP, [tﬂ/(t?’f) (cf. [25] 7.3.8 Theorem), one has da(haoopti—1) = ib115it1-
And from its definition we know that n; = hyjp;—1 is represented by
g (B ot bt — T — ol ot
buy

p+i
(cf. [25] p.288) which is also denoted by 6 (02 Cg) in [13, 32]. In the cobar complex of
pu1

NEg = BP./(p™,v{°), a straightforward computation shows that the coboundary of

. 2 2 . .
vh(ts — tth — tot? 7 TP BT g — #02) — 0l gty — 8T

pbu1

2
1

D+1 D+
2v, v,

s 1 B
(p + i)p*v1 (p + i)pv?

i1 . .2 i1 i1
(BT My 4 okth — okt TP i gty @t it

is + —2—byy. This shows that in Exty}, p(BPs, N3)
pu1 pu1 *
the cohomology class
(W5t 4 vjth — i — i ) @ 1y {véﬂ b }
=- 11
puy pu

Applying the connecting homomorphism 64, we get a1n; = Bi1+108,/p-
From a1m; = Bi+18,/, and the Toda differential, one has:
adap—1(ni) = dop—1(0m;) = dop—1(Biv1Bp/p) = 17 Bis1

The lemma follows from aida,—1(n;) = 187 Bita- O

Proof of Theorem A From 32,21 € E:vt%’(}g(f;';l)(BP*, BP,), we know that d,.(8p2/p2—1) €
Extz’,ij*BP(BP*,BP*) subject to t — s = ¢(p® + 1) — 3. From Theorem 3.2 we know that the

corresponding Ext%’,’}*BP(BP*, BP,) is the Z/p-module generated by g1, g3, 94, g6 and gz, gs.
97 = a1B(p—1)p+1 and gg = a1 3,22 have too low dimension to be the target of d,.(B,2/,2_1).
From the Toda differential da,_1(b11) = o187 we have

2 2_q
dop—1(BY P b11B2) =By T P =g
p2 —6pt1 p2—dpt1

dop-1(91) = dop1 (B 7 blivep) =2008 7 buvep.
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From dap—1(haob117s) = a1 87 haovs (¢f. Theorem 4.4), we have

p2—2p—1

p2—dp—1
dop_1 (51 2 h20611%~51> =of hzm’% = g3.

From Lemma 5.1, we have

dop—1(g6) = dzp—l(ﬁf_lﬁ(p—s)ma) = pr_lﬁ(pf?))p%»ll'

s
gl .‘%\
d2p71 ©
(e}
‘w
1+ gree(s
Bp2/p2—l
0 q(p®+1) -4 q(p*® +1) -3 q(p*+1) -2 t—s
FIGURE 2. Four ANSS dy,—; differentials
Then theorem A follows. O

6. A CONJECTURE
Consider the cofiber sequence
R
and the induced short exact sequence of B P-homologies

0 — BP,(5°) —> BP,($°) — BP,(M) — 0,

which induces a long exact sequence of Fxt groups

- —> Eat"(BP,(8°)) —= Ext"!(BP,(5%)) —= Ext'(BP,(M)) —2> Ext>!(BP,(S%)) — - -

dop_1 dop_1 dap_1 dap—1

- —> Ext?P*(BP,(SY)) — Ext**(BP,(S°)) — Ext?’*(BP,(M)) . Ezt??T1*(BP,(S%)) —
For the connecting homomorphism 4, one has
(5(]%_;,_2) Zﬁpi+1/pi+1, 6(1}1/11'_;,_2) Zﬁpi+1/pi+1_1 and 5(1]1) :iozi.

From the Toda differential da,_1(6,/,) = 17, one can get a non-trivial differential in the
ANSS for the Moore spectrum M

dop—1(h2) = v15}.
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Then from the relation hi+15§;p = hi_;,_gﬂfi (¢f. [22] and [25] 6.4.7), we get the following Adams-
Novikov differential by induction
dop1(hi2)BY = dop1(hiyaBl ) =dop 1 (hi18))
=d2p—1(hi+1)ﬁ£;p

_ D p*
_Ulﬁpifl/pi—l b/p
pifl p

=1 (/Bpifl/pifl p/p )

:vlﬁﬁi/pi Bf s
which implies dop—1(hit2) = Ulﬁf;z/pi in the ANSS for the Moore spectrum M. Then from the
convergence of vy in the ANSS for the Moore spectrum one has

d2p—1(7}1h¢+2) :Ufﬁgi/pi

Applying the connecting homomorphism §, we have the Adams-Novikov differential for the
sphere

(5:2)  dop—1(Bpivi jpiti—1) = dap-1(8(v1his2)) = 6(dap—1(vihiya)) = d(v] i i) = 20280
So one can prove the non-existence of 3,i+1/,i+1_; from the non-triviality of
@l . #0 € Eatyd 5 p(BP., BP.).
(1) Bp/p—1 exists and azff] = 0 because a1 = 0.
(2) Bp2jp2—1 exists, this implies Olgﬂg/p =0.
As we know that ,Bﬁ/p # 0 in EthBPI’D‘ipBSP(BP*, BP,) [22, 25]. But we could not find its rep-

resentative element b, in Ext%pﬁp;P(BP*, BP.(X)) (c¢f. [25] 7.3.12 (b) and the ABC Theorem)
because of the differential in the SDSS.
d(habhy ') = %,
(1) At the prime p = 5, B1xg52 converges to 65/5, where xg50 = hubgo_?"yg. This implies
a25§/5 = 042511‘952 =0 (Cf [25} 7.5.5 stem 990) because 04251 =0.
(2) At the prime p > 7, we compute Ext%pgp;P(BP*, BP,) by the SDSS. The E;-term

By = Eat}yy, 5p(BP., BP.(X)) ® B[] ® P[8i]
subject to s+ u = 2p, t = gp® is the Z/p module generated by

—1 p—5
p—3 -3 2= 2=
Birhi1byg "2, a1 165 “nps o18;? haobi7 bzoMPT*?*pﬂ,fT

In any case, we can conclude ,Bg /o is divisible by 1. Here we believe that it is 811165, 3o
converges to ﬂz o So we have conjectures for the behavior of 61’7’ i /i in general as summarized in
Conjecture C.
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