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Abstract. Let p ⩾ 7 be a prime. We prove that βp2/p2−1 survives to E∞ in the Adams-

Novikov spectral sequence. Additionally, using the Thom map Φ : Ext∗,∗BP∗BP (BP∗, BP∗) →
Ext∗,∗A (Z/p,Z/p), we can see that h0h3 also survives to E∞ in the classical Adams spectral

sequence. As an application of these results, we prove that βp
p/p

is divisible by β1.

1. Introduction

Let p be an odd prime. The Adams-Novikov spectral sequence (ANSS) based on the Brown-
Peterson spectrum BP is one of the most powerful tools to compute the p-component of the
stable homotopy groups of spheres π∗(S

0) (cf. [1, 9, 13, 25]).

The E2-term of the ANSS is Exts,tBP∗BP (BP∗, BP∗), which has been extensively studied in

low dimensions. For s = 1, Ext1,∗BP∗BP (BP∗, BP∗) is generated by αkpn/n+1 for n ⩾ 0, p ∤ k
with k ⩾ 1, where αkpn/n+1 has order pn+1 (cf. [15, 13]). For s = 2, Ext2,∗BP∗BP (BP∗, BP∗) is
the direct sum of cyclic groups generated by βkpn/j,i+1 for suitable (n, k, j, i) (cf. [13, 25, 26]),

βkpn/j,i+1 has order pi+1. For s ⩾ 3, only partial results of Exts,∗BP∗BP (BP∗, BP∗) are known (cf.
[14]).

To compute the stable homotopy groups of the sphere, we still need to know which elements of
the E2-page could survive to the E∞-page of the ANSS. It is known that each element αkpn/n+1

is a permanent cycle in the ANSS which represents an element of ImJ with the same order.
Moreover, Behrens [4] shows that, for l a prime which generates Z×

p , the spectrum Q(l) introduced
in [2, 3] detects the α and β families in the stable stems. However, we are still far from fully
determining which elements of the βkpn/j,i+1 family could survive to E∞.

Let βkpn/j denote βkpn/j,1. H. Toda [29, 30] proved that α1β
p
1 is zero in π∗(S

0). This relation
supports a non-trivial Adams-Novikov differential called the Toda differential

(1.1) d2p−1(βp/p) = a · α1β
p
1 ̸= 0

where a is a non-zero scalar mod p. Hence βp/p could not survive the ANSS.
Based on the Toda differential (1.1), D. Ravenel [22] generalized the result and proved that

there are nontrivial differentials

d2p−1(βpn/pn) ≡ a · α1β
p
pn−1/pn−1 , mod ker β

p(pn−1−1)/(p−1)
1

for n ⩾ 1. Consequently, βpn/pn also can not survive to E∞ in the ANSS. From this one can see

that only βkpn/j ∈ H2(BP∗) for k ⩾ 2, 1 ⩽ j ⩽ pn or k = 1, 1 ⩽ j ⩽ pn − 1 might survive to E∞
in the ANSS. The following are some known results in this area:
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Let p ⩾ 5. Oka proved that: (a) For k = 1, 1 ⩽ j ⩽ p − 1 or k ⩾ 2, 1 ⩽ j ⩽ p, βkp/j are
permanent cycles in the ANSS (see [16]). (b) For k = 1, 1 ⩽ j ⩽ 2p − 2 or k ⩾ 2, 1 ⩽ j ⩽ 2p,
βkp2/j are permanent cycles in the ANSS (see [18]). (c) For n ⩾ 2, k = 1, 1 ⩽ j ⩽ 2n−1(p − 1)

or n ⩾ 2, k ⩾ 2, 1 ⩽ j ⩽ 2n−1p, βkpn/j are permanent cycles in the ANSS (see [20, 21]).

Let p ⩾ 7. Shimomura [28] proved that for k ⩾ 1, 1 ⩽ j ⩽ p2 − 2, βkp2/j are permanent cycles
in the ANSS.

In this paper, we prove:
Theorem A Let p ⩾ 7 be a prime. Then βp2/p2−1 is a permanent cycle in the Adams-Novikov

spectral sequence.
We can briefly summarize our strategy to prove Theorem A as follows. Inspection of degrees

shows that βp2/p2−1 has too low a dimension to be the target of an Adams-Novikov differential.
Hence it suffices to prove βp2/p2−1 does not support any nontrivial differential. We work with
the small descent spectral sequence (SDSS), which converges to the E2 page of the ANSS. Com-
putation shows that in dimension one less than that of βp2/p2−1, the SDSS has 8 elements listed
in Lemma 3.1, each must be eliminated as a possible target of a differential on βp2/p2−1. Two of
them are removed by d′2s in the SDSS as shown in Figure 1, leaving the six listed in Theorem
3.2. Four of them are removed by d′2p−1s in the ANSS as shown in Figure 2. This leaves only
g7 and g8. They each lie in filtration 3, so they cannot be the target of an ANSS differential on
βp2/p2−1.

Assumption on prime p. Henceforth, in this paper, it is always implicitly assumed that p > 5,
unless stated otherwise.

Let M be the mod p Moore spectrum and M(1, pn − 1) be the cofiber of the map vp
n−1

1

Σ∗M
vpn−1
1 // M // M(1, pn − 1).

D. Ravenel ([27] Theorem 7.12) claimed that if M(1, pn − 1) is a ring spectrum and βpn/pn−1 is
a permanent cycle, then βkpn/j is a permanent cycle for all k ⩾ 1, j ⩽ pn − 1.

Between the ANSS and the classical Adams spectral sequence (ASS), there is the Thom
reduction map

Φ : Ext∗BP∗BP (BP∗, BP∗) −→ Ext∗A(Z/p,Z/p)

such that Φ(βpn/pn−1) = h0hn+1. Thus we obtain the following corollary.
Corollary B Let p ⩾ 7 be a prime. Then h0h3 is a permanent cycle in the classical Adams

spectral sequence.
In [6], R. Cohen and P. Goerss claimed the existence of h0hn+1 in the classical ASS. One

can see that the existence of h0hn+1 in ASS is equivalent to the existence of βpn/pn−1 in the
Adams-Novikov spectral sequence. But N. Minami found a fatal error in their proof, so it is
still an open problem in odd primary stable homotopy theory. Due to its extreme importance,
M. Hovey [7] listed the convergence of h0hn+1 as one of the major open problems in algebraic
topology.

Consider the ANSS for the Moore spectrum Ext∗,∗BP∗BP (BP∗, BP∗(M)) =⇒ π∗(M). From the
Toda differential, one can see that in the ANSS for the Moore spectrum

d2p−1(hn+2) =v1β
p
pn/pn , d2p−1(v1hn+2) =v21β

p
pn/pn .

Applying the connecting homomorphism δ : Ext1,∗BP∗BP (BP∗, BP∗(M)) −→ Ext2,∗BP∗BP (BP∗, BP∗)
induced by the cofiber sequence

S0 p // S0 // M
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one gets an Adams differential in the ANSS for sphere

d2p−1(βpn+1/pn+1−1) = α2β
p
pn/pn .

In Section 6, we prove that βp
p/p is divisible by β1, i.e. βp

p/p = β1g. Note α2β1 = 0, this

provides another perspective for understanding why we could have

d2p−1(βp2/p2−1) = α2β
p
p/p = 0 in Ext2p+1,∗

BP∗BP (BP∗, BP∗).

in Theorem A.
Based on the analysis of βp

p/p, we conjecture that:

Conjecture C For n < p− 1, βp
pn/pn is divisible by β1 and

βp
p/p = β1h11b

p−3
20 γ2

βp
p2/p2 = β1h21h11b

p−4
30 δ3

· · ·

βp
pn/pn = β1hn,1hn−1,1 · · ·h11b

p−n−2
n+1,0 α

(n+2)
n+1

· · ·

βp
pp−2/pp−2 = β1hp−2,1hp−3,1 · · ·h11α

(p)
p−1

where α(n+2) is the (n+2)-th letter of the Greek alphabet, and α
(n+2)
n+1 ∈ Extn+2,∗

BP∗BP (BP∗, BP∗) is

one of the (n+2)-th Greek letter family elements. These equations imply α2β
p
pn/pn = α2β1g = 0

for n < p− 1.
For n ⩾ p−1, we conjecture that βp

pn/pn is not divisible by β1 and α2β
p
pn/pn might be non-zero.

This implies that βpn+1/pn+1−1 does not survives to E∞ in the ANSS when n ⩾ p− 1.
This paper is arranged as follows. In section 2 we recall the construction of the topological

small descent spectral sequence (TSDSS) and the small descent spectral sequence (SDSS), where

the SDSS is a spectral sequence that converges to Exts,tBP∗BP (BP∗, BP∗) started from the Ext
groups of a complex with p-cells. Then we describe the E1-terms of the SDSS in the form of
a Generator, total degree t − s and t − s mod pq − 2, and range of the index. This gives a
method to compute the E2-page of the ANSS with specialized t− s. In section 3 we compute the
Adams-Novikov E2-term Exts,tBP∗BP (BP∗, BP∗) subject to t− s = q(p3 +1)− 3 by the SDSS. In

section 4, a non-trivial Adams-Novikov differential d2p−1(h20b11γs) = α1β
p
1h20γs is proved. We

prove our main theorem by showing that dr(βp2/p2−1) = 0 in section 5. At last, in section 6, we
prove that βp

p/p is divisible by β1 and give our conjecture.

Acknowledgments. The second and third named authors were supported by the National Nat-
ural Science Foundation of China (No. 12271183). The third named author was also supported
by the National Natural Science Foundation of China (No. 12001474; 12261091). All authors
contribute equally.

2. The small descent spectral sequence and the ABC Theorem

In 1985, D. Ravenel [23, 24, 25, 26] introduced the method of infinite descent and used it to
compute the first thousand stems of the stable homotopy groups of spheres at the prime 5. This
method applies a so-called small descent spectral sequence (SDSS) to identify the E2-terms of
the ANSS.

Hereafter we set that q = 2p− 2. As mentioned in the Introduction, we assume that p > 5 is
a prime number throughout this paper. Let T (n) be the Ranevel spectrum (cf. [25] Section 5,
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Chapter 6) characterized by

BP∗(T (n)) = BP∗[t1, t2, · · · , tn].
Then we have the following diagram

S0 = T (0) // T (1) // T (2) // · · · // T (n) // · · · // BP,

where S0 denotes the sphere spectrum localized at p. Let T (0)p−1 and T (0)p−2 denote the q(p−1)

and q(p− 2) skeletons of T (1) respectively, they are denoted by X and X for simple. Then

X =S0 ∪α1
eq ∪ · · · ∪α1

e(p−2)q ∪α1
e(p−1)q and X =S0 ∪α1

eq ∪ · · · ∪α1
e(p−2)q.

The BP -homology of them are

BP∗(X) =BP∗[t1]/⟨tp1⟩ and BP∗(X) =BP∗[t1]/⟨tp−1
1 ⟩.

From the definition above we get the following cofiber sequences

(2.1) S0 i′ // X
j′ // ΣqX

k′
// S1,

(2.2) X
i′′ // X

j′′ // S(p−1)q k′′
// ΣX,

and the short exact sequences of BP -homologies

(2.3) 0 // BP∗(S
0)

i′∗ // BP∗(X)
j′∗ // BP∗(Σ

qX) // 0,

(2.4) 0 // BP∗(X)
i′′∗ // BP∗(X)

j′′∗ // BP∗(S
(p−1)q) // 0.

Put (2.3) and (2.4) together, one has the following long exact sequence

(2.5) 0 // BP∗(S
0) // BP∗(X) // BP∗(Σ

qX) // BP∗(Σ
pqX) // · · · .

Put (2.1) and (2.2) together, one has the following Adams diagram of cofibres

(2.6) S0

��

Σq−1Xoo

��

Spq−2oo

��

Σ(p+1)q−3Xoo

��

· · ·oo

X Σq−1X Σpq−2X Σ(p+1)q−3X.

Proposition 2.1. (Ravenel [25, Proposition 7.4.2]) Let X be as above. Then

(a) There is a spectral sequence converging to Exts+u,∗
BP∗BP (BP∗, BP∗(S

0)) with E1-term

Es,t,u
1 =Exts,tBP∗BP (BP∗, BP∗(X))⊗ E[α1]⊗ P [β1], where

Es,t,0
1 = Exts,tBP∗BP (BP∗, BP∗(X)), α1 ∈ E0,q,1

1 , β1 ∈ E0,qp,2
1

and dr : Es,t,u
r −→ Es−r+1,t,u+r

r . Where E[−] denotes the exterior algebra and P [−]
denotes the polynomial algebra on the indicated generators. This spectral sequence is
referred to as the small descent spectral sequence (SDSS).

(b) There is a spectral sequence converging to π∗(S
0) with E1-term

Es,t
1 =π∗(X)⊗ E[α1]⊗ P [β1], where

E0,t
1 = πt(X), α1 ∈ E1,q

1 , β1 ∈ E2,pq
1

and dr : Es,t
r −→ Es+r,t+r−1

r . This spectral sequence is referred to as the topological small
descent spectral sequence (TSDSS).
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The two spectral sequences mentioned above could determine the 0-line and the 1-line (namely

Ext0,∗BP∗BP (BP∗, BP∗(S
0)), Ext1,∗BP∗BP (BP∗, BP∗(S

0))) or the corresponding elements in π∗(S
0)

by Ext0,∗BP∗BP (BP∗, BP∗(X)) and Ext1,∗BP∗BP (BP∗, BP∗(X)). Additionally, for s ⩾ 2, the s-

line Exts,∗BP∗BP (BP∗, BP∗(S
0)) or the corresponding elements in π∗(S

0) are produced by the

corresponding elements in Exts,∗BP∗BP (BP∗, BP∗(X)) with s ⩾ 2 as described in the following
ABC Theorem [26, Theorem 7.5.1].

Theorem 2.2 (ABC Theorem). For t− s < q(p3 + p− 1)− 3, s ⩾ 2

Exts,tBP∗BP (BP∗, BP∗(X)) = A⊕B ⊕ C,

where A is the Z/p-vector space spanned by

{βip, βip+1|i ⩽ p− 1} ∪
{
βp2/p2−j |0 ⩽ j ⩽ p− 1

}
,

B = R⊗ {γi|i ⩾ 2}
where

R = P [bp20]⊗ E[h20]⊗ Z/p
{{

bk11|0 ⩽ k ⩽ p− 1
}
∪
{
h11b

k
20|0 ⩽ k ⩽ p− 2

}}
,

and
Cs,t =

⊕
i⩾0

Rs+2i,t+i(p2−1)q.

We list the bidegrees of the various elements appearing in the ABC Theorem as follows:

βip ∈ Ext2,q[ip
2+ip−1], βip+1 ∈ Ext2,q[ip

2+(i+1)p], βp2/p2−j ∈ Ext2,q[p
3+j],

γi ∈ Ext3,q[i(p
2+p+1)−p−2], h11 ∈ Ext1,qp, h20 ∈ Ext1,q(p+1), b11 ∈ Ext2,qp

2

, b20 ∈ Ext2,qp(p+1).

From the ABC Theorem above, we can find all generators of Exts,tBP∗BP (BP∗, BP∗(X)) for

s ⩾ 2, t − s < q(p3 + p − 1) − 3. Table 1 summarizes the first class of generators, namely the
generators of A.

Generators of A t− s and t− s mod pq − 2 Range of index

βip q[ip2 + ip− 1]− 2
≡ 2(i− 1)p+ 2i if i ⩽ p− 2
≡ 0 if i = p− 1

βip+1 q[ip2 + (i+ 1)p]− 2
≡ 2ip+ 2i if i ⩽ p− 2
≡ 2p

2p
if i = p− 1

βp2/p2−j q[p3 + j]− 2
≡ 2(j + 1)p− 2j

2p
if j ⩽ p− 2

≡ 4 if j = p− 1

Table 1. Generators of A

Here, pq − 2 = 2p2 − 2p − 2 is the total degree of β1 ∈ E0,qp,2
1 in the SDSS. The reason for

computing t − s mod pq − 2 and the purpose of underlining certain values will become clear in
Lemma 3.1.

The generators of B are summarized in Table 2.

Generators of B t− s and t− s mod pq − 2 Range of index
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h11b
k
20γi q[(i+ k)p2 + (i+ k)p+ i− 2] for 2 ⩽ i ⩽ p− 1, 0 ⩽ k ⩽ p− 2,

−2k − 4 and 2 ⩽ i+ k ⩽ p− 1
≡ 2(k + 2i− 2)p if k + 2i ⩽ p
≡ 2(k + 2i− p− 1)p+ 2 if k + 2i > p

h20h11b
k
2,0γi q[(i+ k)p2 + (i+ k + 1)p+ i− 1] for 2 ⩽ i ⩽ p− 1, 0 ⩽ k ⩽ p− 2,

−2k − 5 and 2 ⩽ i+ k ⩽ p− 1
≡ 2(k + 2i− 1)p− 1 if k + 2i < p
≡ 2(k + 2i− p)p+ 1 if k + 2i ⩾ p

bk11γi q[(i+ k)p2 + (i− 1)p+ i− 2] for 2 ⩽ i ⩽ p− 1, 0 ⩽ k ⩽ p− 1,
−2k − 3 and 2 ⩽ i+ k ⩽ p− 1

≡ 2(k + 2i− 2)p− 2k − 1 if k + 2i ⩽ p+ 1
≡ 1 if k = 0, 2i = p+ 1
≡ 2(k + 2i− p− 1)p− 2k + 1

4p−3
if k + 2i ⩾ p+ 2

h20b
k
11γi q[(i+ k)p2 + ip+ i− 1] for 2 ⩽ i ⩽ p− 1, 0 ⩽ k ⩽ p− 1,

−2k − 4 and 2 ⩽ i+ k ⩽ p− 1
≡ 2(k + 2i− 1)p− 2(k + 1) if k + 2i ⩽ p
≡ 2(k + 2i− p)p− 2k

2p
if k + 2i > p

Table 2. Generators of B

Let us take h11b
k
20γi from the B-family as an example to illustrate the calculation.

The total degree of h11b
k
20γi is

q[(i+ k)p2 + (i+ k)p+ i− 2]− 2k − 4 = 2(i+ k)p3 − 2(k + 2)p− 2(i+ k)

for 2 ⩽ i ⩽ p − 1, 0 ⩽ k ⩽ p − 2. To ensure that the total degree of h11b
k
20γi is less than

q(p3 + p− 1)− 3, we need i+ k < p. Straightforward computation shows

2(i+ k)p3 − 2(k + 2)p− 2(i+ k) ≡ 2(k + 2i− 2)p mod pq − 2

Notice that 2(k + 2i− 2)p > pq − 2 if k + 2i > p, the total degree of h11b
k
20γi is

2(k + 2i− 2)p− (pq − 2) = 2(k + 2i− p− 1)p+ 2 mod pq − 2

if k + 2i > p.
One might have noticed that although R contains the P [bp20] part, P [bp20] doesn’t show up in

the B-family generators. This is because the total degree of bp20 is

p(qp(p+ 1)− 2) > q(p3 + p− 1)− 3

Hence, suppose a generator of B is a multiple of bp20, its total degree would exceed the range of
interest.

On the other hand, the P [bp20] part does show up in the C-family generators. The key difference
is that C is the direct sum of shifted copies of R. Based on [23, Theorem 4.11, 4.12], we could
determine all generators of C.

In more detail, let us write i = jp +m, with 0 ⩽ m ⩽ p − 1. Consider the i-th shifted copy

Rs+2i,t+i(p2−1)q ⊂ Cs,t we have:

(1) b
(j+1)p
20 ∈ R2(p−m)+2(jp+m),t+(jp+m)(p2−1)q ⊂ C2(p−m),t, which is represented by

bp−m−1
20 ujp+m
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for p− 1 ⩾ m ⩾ 1, where

ujp+m ∈ C2,q[(j+1)p2+(j+m+1)p+m].

From this, we get generators of the form

bp−m−1
20 ujp+m ⊗ E[h20]⊗

{
bk11|0 ⩽ k ⩽ p− 1

}
∪
{
h11b

k
20|0 ⩽ k ⩽ p− 2

}
(2) bk11b

jp
20 ∈ R2(k−m)+2(jp+m),t+(jp+m)(p2−1)q ⊂ C2(k−m),t, which is represented by

bk−m−1
11 β(j+1)p/p−m

for p− 1 ⩾ k ⩾ m+ 1 ⩾ 1, where

β(j+1)p/p−m ∈ C2,q[(j+1)p2+jp+m].

From this, we get generators of the form

bk−m−1
11 β(j+1)p/p−m ⊗ E[h20],

• Especially h20b
p−1
11 bjp20 ∈ R3+2(jp+p−2),t+(jp+p−2)(p2−1)q ⊂ C3,t is represented by

h11β(j+1)p/1,2, which is an element of order p2.

(3) h11b
k
20b

jp
20 ∈ R2(k−m)+1+2(jp+m),t+(jp+m)(p2−1)q ⊂ C2(k−m)+1,t, which is represented by

bk−m−1
20 ηjp+m+1

for p− 2 ⩾ k ⩾ m+ 1 ⩾ 1, where

ηjp+m+1 = h11ujp+m ∈ C3,q[(j+1)p2+(j+m+2)p+m].

(4) h20h11b
k
20b

jp
20 ∈ R2(k−m+1)+2(jp+m),t+(jp+m)(p2−1)q ⊂ C2(k−m+1)t, which is represented

by
bk−m
20 βjp+m+2

for p− 2 ⩾ k ⩾ m ⩾ 0, where

βjp+m+2 ∈ C2,q[jp2+(j+m+2)p+m+1].

• Especially h20h11b
p−2
20 bjp20 ∈ R2+2(jp+p−2),t+(jp+p−2)(p2−1)q ⊂ C2,t is represented by

β(j+1)p/1,2, which is an element of order p2.

The generators of C are summarized in Table 3.

Generators of C t− s and t− s mod pq − 2 Range of index

bk11b
p−m−1
20 ujp+m q[(p−m+ j + k + 1)p2 + jp+m] for 1 ⩽ m < p, 0 ⩽ j ⩽ p− 2,

−2(p−m+ k) and 0 ⩽ k < p, j + k < m
≡ 2(j + k + 1)p+ 2(j − k + 1)

h20b
k
11b

p−m−1
2,0 ujp+m q[(p−m+ j + k + 1)p2 + (j + 1)p for 1 ⩽ m < p, 0 ⩽ j ⩽ p− 2,

+m+ 1]− 2(p−m+ k)− 1 and 0 ⩽ k < p, j + k < m,
and j + k ⩽ p− 3

≡ 2(j + k + 2)p+ 2(j − k + 1)− 1 if j + k ⩽ p− 4
or j + k = p− 3, 2j < p− 5

≡ 2(j − k + 2)p− 1 if j + k = p− 3, 2j ⩾ p− 5

h11b
k+p−m−1
20 ujp+m q[(p−m+ j + k + 1)p2 + (j + k for 1 ⩽ m < p, 0 ⩽ j ⩽ p− 2,

+1)p+m]− 2(p−m+ k)− 1 and 0 ⩽ k ⩽ p− 2, j + k < m,
and j + k ⩽ p− 3

≡ 2(j + k + 2)p+ 2(j − p) + 3
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h20h11b
k+p−m−1
2,0 ujp+m q[(p−m+ j + k + 1)p2 + (j + k for 1 ⩽ m < p, 0 ⩽ j ⩽ p− 2,

+2)p+m] + 2(m− k − 2) and 0 ⩽ k ⩽ p− 2, j + k < m,
and j + k ⩽ p− 3

≡ 2(j + k + 2)p+ 2j + 2 if j + k ⩽ p− 4
≡ 2j + 4 if j + k = p− 3

bk−m−1
11 β(j+1)p/p−m q[(j + k −m)p2 + jp+m] for 1 ⩽ m+ 1 ⩽ k < p,

−(2k − 2m) and 0 ⩽ j ⩽ p− 2
≡ 2(j + k)p+ 2(j − k) if j + k ⩽ p− 2

or j + k = p− 1, 2j < p− 1
≡ 2(j + k − p+ 1)p+ 2(j − k + 1)

2p
if j + k ⩾ p

or j + k = p− 1, 2j ≥ p− 1

h20b
k−m−1
11 β(j+1)p/p−m q[(j + k −m)p2 + (j + 1)p+m for 1 ⩽ m+ 1 ⩽ k < p,

+1]− (2k − 2m+ 1) and 0 ⩽ j ⩽ p− 2
≡ 2(j + k + 1)p+ 2(j − k)− 1

4p−3
if j + k ⩽ p− 3

or j + k = p− 2, 2j ⩽ p− 3
≡ 2(j + k − p+ 2)p+ 2(j − k) + 1 if j + k > p− 2

or j + k = p− 2, 2j > p− 3

h1,1β(j+1)p/1,2 q[(j + 1)p2 + (j + 2)p− 1]− 3 for 0 ⩽ j ⩽ p− 2
≡ 2jp+ 2(j + 1) + 1 if j ⩽ p− 3
≡ 1 if j = p− 2

bk−m−1
2,0 ηjp+m+1 q[(j + k −m)p2 + (j + k + 1)p for 1 ⩽ m+ 1 ⩽ k ⩽ p− 2,

+m]− (2k − 2m+ 1) and 0 ⩽ j ⩽ p− 2
≡ 2(j + k)p+ 2j + 1 if j + k ⩽ p− 2
≡ 2(j + k − p+ 2)p if j + k > p− 2

+2(j − p) + 3
4p−3

bk−m
2,0 βjp+m+2 q[(j + k −m)p2 + (j + k + 2)p for 0 ⩽ m ⩽ k ⩽ p− 2,

+m+ 1]− 2(k −m+ 1) and 0 ⩽ j ⩽ p− 2
≡ 2(j + k + 1)p+ 2j

2p
if j + k ⩽ p− 3

≡ 2(j + k − p+ 3)p+ 2(j − p) + 2 if j + k > p− 3
≡ 0 if j = k = p− 2

β(j+1)p/1,2 q[(j + 1)p2 + (j + 1)p− 1]− 2 for 0 ⩽ j ⩽ p− 2
≡ 2jp+ 2(j + 1) if j ⩽ p− 3
≡ 0 if j = p− 2

Table 3. Generators of C

Remark. The Adams-Novikov spectral sequence for the spectrum X collapses from E2-term
Exts,tBP∗BP (BP∗, BP∗(X)) in the range t− s < q(p3+ p− 1)− 3, since there are no elements with
filtration > 2p. Thus we actually get the homotopy groups πt−s(X) in this range.

3. The ANSS E2-term Exts,tBP∗BP (BP∗, BP∗) at t− s = q(p3 + 1)− 3

Consider the Adams-Novikov differential dr : Es,t
r → Es+r,t+r−1

r in the ANSS. From the

total degree of βp2/p2−1, we know that dr(βp2/p2−1) ∈ Exts,tBP∗BP (BP∗, BP∗) such that t − s =
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q(p3+1)− 3. The SDSS Es,t,u
1 converges to Exts+u,t

BP∗BP (BP∗, BP∗). Fix t− s−u = q(p3+1)− 3,
we have:

Lemma 3.1. Fix t − s − u = q(p3 + 1) − 3, the E1-term Es,t,u
1 of the SDSS is the Z/p-module

generated by the following p+15
2 generators:

g1 =α1β
p2−1
1 β2 ∈ E2,∗,2p2−1

1 ; g2 =βp2−p
1 h20βp/p ∈ E3,∗,2p2−2p

1 ;

g3 =α1β
p2−2p−1

2
1 h2,0γ p+1

2
∈ E4,∗,p2−2p

1 ; g4 =β
p2−6p+1

2
1 b211γ p+1

2
∈ E7,∗,p2−6p+1

1 ;

g5,m =α1β
mp− p−1

2
1 b

p−1
2 −m

11 β( p+1
2 )p/p−m ∈ Ep+1−2m,∗,∗

1 ; g6 =βp−1
1 η(p−3)p+3 ∈ E3,∗,2p−2

1 ;

g7 =α1β(p−1)p+1 ∈ E
2,q(p3+1),1
1 ; g8 =α1βp2/p2 ∈ E

2,q(p3+1),1
1 .

The index range for m in g5,m is 0 ⩽ m ⩽ p−1
2 .

Proof. Fix t−s−u = q(p3+1)−3. From the ABC Theorem, we know that the generators of the
E1-terms in the SDSS are of the form W = βk

1w or W = α1β
k
1w, where w is an element listed in

the ABC Theorem.
1. If a generator of Es,t,u

1 is of the form W = βk
1w, then the total degree of βp

1w is q(p3+1)−3
and the total degree of w is q(p3 + 1)− 3 modulo the total degree of β1 which is t− u = qp− 2.
Note that

q(p3 + 1)− 3 ≡ 4p− 3 mod qp− 2,

we list all the generators whose total degree might be 4p− 3 mod qp− 2, which are marked with
underline and subscript 4p− 3 in Table 1, Table 2 and Table 3.

bk11γi at k = 2 and i = (p+ 1)/2;

h20b
k−m−1
11 β(j+1)p/p−m at k = 1 and j = 0;

bk−m−1
20 ηjp+m+1 at k = 3 and j = p− 3.

From which we get the following generators in Es,t,u
1 :

b211γ p+1
2

=⇒ g4 = β
p2−6p+1

2
1 b211γ p+1

2
∈ E7,∗,p2−6p+1

1 ;

h20βp/p =⇒ g2 = βp2−p
1 h20βp/p ∈ E3,∗,2p2−2p

1 ;

η(p−3)p+3 =⇒ g6 = βp−1
1 η(p−3)p+3 ∈ E3,∗,2p−2

1 .

2. If a generator of Es,t,u
1 is of the form W = α1β

k
1w1, then from the total degree of α1 being

t− u = 2p− 3 we see that the total degree of w1 is 2p modulo qp− 2. Similarly, we can find all
such w1’s, which are marked with underline and subscript 2p in Table 1, Table 2 and Table 3.

β(p−1)p+1; βp2/p2 ; h20γ p+1
2
; b

p−1
2 −m

11 β( p+1
2 )p/p−m; β2.

From which we get the following generators in Es,t,u
1 :

g7 =α1β(p−1)p+1; g8 =α1βp2/p2 ;

g3 =α1β
p2−2p−1

2
1 h2,0γ p+1

2
; g5,m =α1β

mp− p−1
2

1 b
p−1
2 −m

11 β( p+1
2 )p/p−m, 0 ⩽ m ⩽

p− 1

2
;

g1 =α1β
p2−1
1 β2.

Computing the filtration of the corresponding generators, we get the lemma. □
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Remark: The method in proving Lemma 3.1 is a general method in computing the E1-term
Es,t,u

1 of the SDSS with specialized t− s− u.

Theorem 3.2. Fix t− s = q(p3 + 1)− 3, the Adams-Novikov E2-term Exts,tBP∗BP (BP∗, BP∗) is
the Z/p-module generated by the following 6 elements

g1 =α1β
p2−1
1 β2 ∈ Ext2p

2+1,∗
BP∗BP ;

g3 =α1β
p2−2p−1

2
1 h2,0γ p+1

2
∈ Extp

2−2p+4,∗
BP∗BP ; g4 =β

p2−6p+1
2

1 b211γ p+1
2

∈ Extp
2−6p+8,∗

BP∗BP ;

g6 =βp−1
1 η(p−3)p+3 ∈ Ext2p+1,∗

BP∗BP ;

g7 =α1β(p−1)p+1 ∈ Ext3,q(p
3+1); g8 =α1βp2/p2 ∈ Ext3,q(p

3+1).

Proof. Following D. Ravenel [25] page 287, we compute in the cobar complex ofN2
0 = BP∗/(p

∞, v∞1 )

d

(
vjp2
pvp1

(t2 − tp+1
1 )

)
=
vjp2
pvp1

tp1 ⊗ t1 +
vjp2

pvp−1
1

b10,

−d

(
vjp+1
2

pvp+1
1

t1

)
=− vjp2

pvp1
tp1 ⊗ t1 − j

v
(j−1)p+1
2

pv1
tp

2

1 ⊗ t1 +
vjp2
pv1

t1 ⊗ t1,

d

(
j
v
(j−1)p
2 v3
pv1

t1

)
=j

v
(j−1)p+1
2

pv1
tp

2

1 ⊗ t1 − j
vjp2
pv1

t1 ⊗ t1,

−(j − 1)/2d

(
vjp2
pv1

t21

)
=(j − 1)

vjp2
pv1

t1 ⊗ t1.

A straightforward calculation shows that the coboundary of

vjp2
pvp1

t2 −
vjp2
pvp1

tp+1
1 − vjp+1

2

pvp+1
1

t1 + j
v
(j−1)p
2 v3
pv1

t1 − (j − 1)/2
vjp2
pv1

t21

is
vjp2

pvp−1
1

b10. Then from δδ

(
vjp2
pvp1

)
= βjp/p, we get a differential in the SDSS

d2(h20βjp/p) = β1βjp/p−1.

Similarly, we have

d2(h20βjp/i) =β1βjp/i−1 for 2 ⩽ i ⩽ p.(3.1)

Applying formula (3.1), we get the following differentials in the SDSS

d2(g2) = d2(β
p2−p
1 h20βp/p) =βp2−p+1

1 βp/p−1,

d2(α1β
mp− p−1

2 −1
1 b

p−1
2 −m

11 h20β( p+1
2 )p/p−m+1) =α1β

mp− p−1
2

1 b
p−1
2 −m

11 β( p+1
2 )p/p−m = g5,m,

which are illustrated in Figure 1. Then the theorem follows. □

4. A differential in the ANSS

This section is aimed at showing that

d2p−1(h20b11γs) = α1β
p
1h20γs(4.1)

in the Adams-Novikov spectral sequence. This differential could imply the vanishing of g3.
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0 t− s− uq(p3 + 1)− 4 q(p3 + 1)− 3 q(p3 + 1)− 2

βp2/p2−1

s+ u

g6

g7 g83

d2

d2g5,m

g4

g3

g2

g1

Figure 1. Two SDSS d2 differentials

We begin from showing that πq(p2+2p+2)−2(V (2)) = 0. From which we show that the Toda

bracket ⟨α1β1, p, γs⟩ = 0 and the Toda bracket ⟨α1β
p−1
1 , α1β1, p, γs⟩ is well-defined. Then from

the relation

⟨α1β
p−1
1 , α1β1, p, γs⟩ = α1β

p−1
1 h20γs = βp/p−1γs

in π∗(S
0) and d(h20b11) = β1βp/p−1, we get the desired differential in the ANSS.

Let p ⩾ 7 and V (2) be the Smith-Toda spectrum characterized by

BP∗(V (2)) = BP∗/I3

where I3 is the invariant ideal of BP∗ = Z(p)[v1, v2, · · · , vi, · · · ] generated by p, v1 and v2. To
compute the homotopy groups of V (2), one has the ANSS {Es,t

r V (2), dr} that converges to
π∗(V (2)). The E2-page of this spectral sequence is

Es,t
2 V (2) = Exts,tBP∗BP (BP∗, BP∗(V (2)))

Let

Γ = BP∗/I3 ⊗BP∗ BP∗BP ⊗BP∗ BP∗/I3 = BP∗/I3[t1, t2, · · · ].
Then (BP∗/I3,Γ) is a Hopf algebroid, and its structure map is deduced from that of (BP∗, BP∗(BP )).
By a change of ring theorem, one sees that

Exts,tBP∗BP (BP∗, BP∗(V (2))) = Exts,tΓ (BP∗, BP∗/I3) =⇒ π∗(V (2))

Lemma 4.1. The q(p2 + 2p+ 2)− 2 dimensional stable homology group of V (2) is trivial, i.e.,

πq(p2+2p+2)−2(V (2)) = 0.

Proof. Fix t− s = q(p2 + 2p+ 2)− 2, we know that the Adams-Novikov E2-term

Ext
s,s+q(p2+2p+2)−2
BP∗BP (BP∗, BP∗(V (2))) = Ext

s,s+q(p2+2p+2)−2
Γ (BP∗, BP∗/I3)

converges to πq(p2+2p+2)−2(V (2)). We will prove that πq(p2+2p+2)−2(V (2)) = 0 by showing that

Ext
s,s+q(p2+2p+2)−2
BP∗BP (BP∗, BP∗(V (2))) = 0.
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In the cobar complex Cs
ΓBP∗/I3, the inner degree of vi, |vi| = |ti| ⩾ q(p3 + p2 + p + 1) for

i ⩾ 4. It follows that in the range t− s ⩽ q(p3 + p2 + p+ 1)− 1,

Exts,tBP∗BP (BP∗, BP∗/I3) = Exts,tΓ (BP∗, BP∗/I3) = Exts,tΓ′ (BP∗, BP∗/I3).

where Γ′ = Z/p[v3][t1, t2, t3]. From ηR(v3) ≡ v3 mod I3, we see that

Exts,∗Z/p[v3][t1,t2,t3](BP∗, BP∗/I3) ∼= Exts,∗Z/p[t1,t2,t3](Z/p,Z/p)⊗ Z/p[v3].

To compute the Ext groups Ext∗Z/p[t1,t2,t3](Z/p,Z/p), we can use the modified May spectral

sequence (MSS) introduced in [10, 11, 12, 26].

There is the May spectral sequence {Es,t,∗
r , δr} that converges to Exts,tZ/p[t1,t2,t3](Z/p,Z/p).

The E1-term of this spectral sequence is

(4.2) E∗,∗,∗
1 = E[hij |0 ⩽ j, i = 1, 2, 3]⊗ P [bij |0 ⩽ j, i = 1, 2, 3],

where

hij ∈E1,q(1+p+···+pi−1)pj ,2i−1
1 and bij ∈E2,q(1+p+···+pi−1)pj+1,p(2i−1)

1 .

The first May differential is given by

(4.3) δ1(hi,j) =
∑

0<k<i

hi−k,k+jhk,j and δ1(bi,j) = 0.

For the reason of the total degree, to compute Ext
s,s+(q(p2+2p+2)−2)
BP∗BP (BP∗, BP∗/I3) we only

need to consider the sub-algebra generated by h30, h20, h10, h21, h11, h12 and b20, b10, b11, i.e. the
subcomplex

E[hij |1 ⩽ i, i+ j ⩽ 3]⊗ E[b20, b11]⊗ P [b10].

From (4.3), we know that within t− s ⩽ q(p2 + 2p+ 2)− 2 the May’s E2-term

Es,∗,∗
2 = Hs,∗,∗(Es,∗,∗

1 , δ1) = H∗,∗,∗(E[hij |0 ⩽ j, i+ j ⩽ 3], δ1)⊗ E[b20, b11]⊗ P [b10].

H. Toda in [31] computed the cohomology of (E[hij |0 ⩽ j, i+ j ⩽ 3], δ1). Here we only jot down
the even-dimensional elements within that range.

h20h10, q(p+ 2)− 2; h20h11, q(2p+ 1)− 2;
h12h10, q(p2 + 1)− 2; h21h11, q(p2 + 2p)− 2.

Thus within t−s ⩽ q(p2+2p+2)−2, the even dimensional May’s E2−term Es,t,∗
2 is a sub-algebra

of
Z/p{1, h20h10, h20h11, h12h10, h21h11} ⊗ E[b20, b11]⊗ P [b10].

Suppose we have a generator y in Ext
s,s+q(p2+2p+2)−2
Z/p[v3][t1,t2,t3] (BP∗, BP∗/I3). Then y is the form of

x or v3x where x is an even dimensional generator in H∗(E[hij |i+ j ⩽ 3])⊗E[b20, b11]⊗ P [b10].

(1) If y = v3x, then x ∈ Es,t,∗
2 subject to t− s = q(p+ 1)− 2. An easy computation shows

that the corresponding E2-term is zero.
(2) If y = x, then x ∈ Es,t,∗

2 subject to t− s = q(p2 + 2p+ 2)− 2. Similarly, from

q(p2 + 2p+ 2)− 2 ≡6p− 2 mod qp− 2

we compute that the total degree t− s mod qp− 2 of the generators in

Z/p{1, h20h10, h20h11, h12h10, h21h11} ⊗ [b20, b11]

and find none of them is 6p− 2. Thus the corresponding E2-term is zero.

The lemma then follows. □

It is easily shown that the following theorem holds from the lemma above.
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Theorem 4.2. For p ⩾ 7, s ⩾ 1, the Toda bracket ⟨α1β1, p, γs⟩ = 0.

Proof. Let ṽ3 be the composition of the following maps

Sq(p2+p+1) ĩ // Σq(p2+p+1)V (2)
v3 // V (2),

where the first map is the inclusion map to the bottom cell.
It is known that ṽ3 is an order p element in πq(p2+p+1)(V (2)). Thus the Toda bracket

⟨α1β1, p, ṽ3⟩ is well defined and ⟨α1β1, p, ṽ3⟩ ∈ πq(p2+2p+2)−2(V (2)) = 0. It follows that the
Toda bracket ⟨α1β1, p, ṽ3⟩ = 0.

Let j̃ : V (2) −→ Sq(p+2)+3 be the collapsing lower cells map from V (2), then γs = ṽ3 · vs−1
3 · j̃.

As a result,

⟨α1β1, p, γs⟩ = ⟨α1β1, p, ṽ3 · vs−1
3 · j̃⟩ = ⟨α1β1, p, ṽ3⟩ · vs−1

3 · j̃ = 0

because ⟨α1β1, p, ṽ3⟩ = 0 ∈ πq(p2+2p+2)−2V (2) = 0. □

Proposition 4.3 (also see [25] Proposition 7.5.11). For p ⩾ 7, s ⩾ 1, the Toda bracket

⟨α1β
p−1
1 , α1β1, p, γs⟩ is well defined in π∗(S

0), and

α1β
p−1
1 h20γs = ⟨α1β

p−1
1 , α1β1, p, γs⟩ = βp/p−1γs.

Proof. From ⟨βp−1
1 , α1β1, p⟩ = 0, ⟨α1β1, p, α1⟩ = 0, ⟨α1, α1β1, p⟩ = 0 and ⟨α1β1, p, γs⟩ = 0, we

know that the following 4-fold Toda bracket is well-defined and

βp/p−1 = ⟨βp−1
1 , α1β1, p, α1⟩; α1h20γs = ⟨α1, α1β1, p, γs⟩.

On the other hand, one has

βp−1
1 α1h20γs = βp−1

1 ⟨α1, α1β1, p, γs⟩
= ⟨α1β

p−1
1 , α1β1, p, γs⟩

= α1⟨βp−1
1 , α1β1, p, γs⟩

= ⟨βp−1
1 , α1β1, p, α1γs⟩

= ⟨βp−1
1 , α1β1, p, α1⟩ · γs

= βp/p−1γs

The proposition follows. □

Theorem 4.4. For p ⩾ 7, 2 ⩽ s ⩽ p− 2, we have the following Adams-Novikov differentials

d2p−1(h2,0b1,1γs) = α1β
p
1h2,0γs.

Proof. Note that b11 = βp/p. Then from (3.1) one has the differential in the small descent spectral
sequence

d2(h20b11) = β1βp/p−1,

which could be read as d(h20βp/p) = β1βp/p−1 and d(h20βp/pγs) = β1βp/p−1γs in the cobar
complex of BP∗ or equivalently the first Adams-Novikov differential in the ANSS. Then from the
relation βp/p−1γs = α1β

p−1
1 h20γs in π∗(S

0) and βp/p−1γs = 0 in Ext5,∗BP∗BP (BP∗, BP∗), we get
the Adams differential in the ANSS

d2p−1(h2,0b1,1γs) = β1 · βp−1
1 α1h20γs = α1β

p
1h20γs.

The theorem follows. □
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5. The proof of Theorem A

In this section, we prove our main theorem which states that βp2/p2−1 survives to E∞ in
the ANSS. Note that βp2/p2−1 has too low a dimension to be the target of an Adams-Novikov
differential, we will do this by showing that all the Adams-Novikov differentials dr(βp2/p2−1) are
trivial.

Lemma 5.1. Let i ̸≡ 0 mod p. In the ANSS, one has the following Adams-Novikov differential

d2p−1(ηi) = βp
1βi+1

Proof. Recall from [25] 7.3.11 Theorem (e), in the SDSS

E1 = Exts,tBP∗BP (BP∗, BP∗(X
p2−1))⊗ E[h11]⊗ P [b11] =⇒ Exts,tBP∗BP (BP∗, BP∗(X)),

where BP∗(X
p2−1) = BP∗[t1]/⟨tp

2

1 ⟩ (cf. [25] 7.3.8 Theorem), one has d2(h20µi−1) = ib11βi+1.
And from its definition we know that ηi = h11µi−1 is represented by

δδ

(
vp+i−1
2 t2 + vi2t

p
2 − vi2t

p2+p
1 − vi−1

2 v3t
p
1

pv1

)

(cf. [25] p.288) which is also denoted by δδ

(
vp+i
2

pv1
ζ2

)
in [13, 32]. In the cobar complex of

N2
0 = BP∗/(p

∞, v∞1 ), a straightforward computation shows that the coboundary of

vi2(t3 − t1t
p
2 − t2t

p2

1 + tp
2+p+1

1 ) + vp+i−1
2 (t1t2 − tp+2

1 )− vi−1
2 v3(t2 − tp+1

1 )

pv1

+
2vp+i

2

(p+ i)p2v1
t1 −

vp+i
2

(p+ i)pv21
t21

is
(vp+i−1

2 t2 + vi2t
p
2 − vi2t

p2+p
1 − vi−1

2 v3t
p
1)⊗ t1

pv1
+

vi+1
2

pv1
b11. This shows that in Ext2,∗BP∗BP (BP∗, N

2
0 )

the cohomology class[
(vp+i−1

2 t2 + vi2t
p
2 − vi2t

p2+p
1 − vi−1

2 v3t
p
1)⊗ t1

pv1

]
= −

[
vi+1
2

pv1
b11

]
.

Applying the connecting homomorphism δδ, we get α1ηi = βi+1βp/p.
From α1ηi = βi+1βp/p and the Toda differential, one has:

α1d2p−1(ηi) = d2p−1(α1ηi) = d2p−1(βi+1βp/p) = α1β
p
1βi+1

The lemma follows from α1d2p−1(ηi) = α1β
p
1βi+1. □

Proof of Theorem A From βp2/p2−1 ∈ Ext
2,q(p3+1)
BP∗BP (BP∗, BP∗), we know that dr(βp2/p2−1) ∈

Exts,tBP∗BP (BP∗, BP∗) subject to t − s = q(p3 + 1) − 3. From Theorem 3.2 we know that the

corresponding Exts,tBP∗BP (BP∗, BP∗) is the Z/p-module generated by g1, g3, g4, g6 and g7, g8.
g7 = α1β(p−1)p+1 and g8 = α1βp2/p2 have too low dimension to be the target of dr(βp2/p2−1).
From the Toda differential d2p−1(b11) = α1β

p
1 we have

d2p−1(β
p2−p−1
1 b11β2) =α1β

p2−1
1 β2 = g1

d2p−1(g4) = d2p−1(β
p2−6p+1

2
1 b211γ p+1

2
) =2α1β

p2−4p+1
2

1 b11γ p+1
2
.
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From d2p−1(h20b11γs) = α1β
p
1h20γs (cf. Theorem 4.4), we have

d2p−1

(
β

p2−4p−1
2

1 h20b11γ p+1
2

)
= α1β

p2−2p−1
2

1 h20γ p+1
2

= g3.

From Lemma 5.1, we have

d2p−1(g6) = d2p−1(β
p−1
1 η(p−3)p+3) = β2p−1

1 β(p−3)p+4.

0 t− sq(p3 + 1)− 4 q(p3 + 1)− 3 q(p3 + 1)− 2

βp2/p2−1

s

g6

g7 g81

d2p−1

d2p−1

d2p−1

d2p−1

g4

g3

g1

Figure 2. Four ANSS d2p−1 differentials

Then theorem A follows. 2

6. A conjecture

Consider the cofiber sequence

S0 p // S0 // M

and the induced short exact sequence of BP -homologies

0 // BP∗(S
0)

p // BP∗(S
0) // BP∗(M) // 0,

which induces a long exact sequence of Ext groups

· · · // Ext1,t(BP∗(S
0)) //

d2p−1

��

Ext1,t(BP∗(S
0)) //

d2p−1

��

Ext1,t(BP∗(M))
δ //

d2p−1

��

Ext2,t(BP∗(S
0)) //

d2p−1

��

· · ·

· · · // Ext2p,∗(BP∗(S
0)) // Ext2p,∗(BP∗(S

0)) // Ext2p,∗(BP∗(M))
δ // Ext2p+1,∗(BP∗(S

0)) // · · · .

For the connecting homomorphism δ, one has

δ(hi+2) =βpi+1/pi+1 , δ(v1hi+2) =βpi+1/pi+1−1 and δ(vi1) =iαi.

From the Toda differential d2p−1(βp/p) = α1β
p
1 , one can get a non-trivial differential in the

ANSS for the Moore spectrum M
d2p−1(h2) = v1β

p
1 .
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Then from the relation hi+1β
pi

p/p = hi+2β
pi

1 (cf. [22] and [25] 6.4.7), we get the following Adams-

Novikov differential by induction

d2p−1(hi+2)β
pi

1 = d2p−1(hi+2β
pi

1 ) =d2p−1(hi+1β
pi

p/p)

=d2p−1(hi+1)β
pi

p/p

=v1β
p
pi−1/pi−1β

pi

p/p

=v1(βpi−1/pi−1βpi−1

p/p )p

=v1β
p
pi/piβ

pi

1 ,

which implies d2p−1(hi+2) = v1β
p
pi/pi in the ANSS for the Moore spectrum M . Then from the

convergence of v1 in the ANSS for the Moore spectrum one has

d2p−1(v1hi+2) =v21β
p
pi/pi

Applying the connecting homomorphism δ, we have the Adams-Novikov differential for the
sphere

d2p−1(βpi+1/pi+1−1) = d2p−1(δ(v1hi+2)) = δ(d2p−1(v1hi+2)) = δ(v21β
p
pi/pi) = 2α2β

p
pi/pi .(5.2)

So one can prove the non-existence of βpi+1/pi+1−1 from the non-triviality of

α2β
p
pi/pi ̸= 0 ∈ Ext2p+1,∗

BP∗BP (BP∗, BP∗).

(1) βp/p−1 exists and α2β
p
1 = 0 because α2β1 = 0.

(2) βp2/p2−1 exists, this implies α2β
p
p/p = 0.

As we know that βp
p/p ̸= 0 in Ext2p,qp

3

BP∗BP (BP∗, BP∗) [22, 25]. But we could not find its rep-

resentative element bp11 in Ext2p,qp
3

BP∗BP (BP∗, BP∗(X)) (cf. [25] 7.3.12 (b) and the ABC Theorem)
because of the differential in the SDSS.

d(h11b
p−1
20 ) = bp11

(1) At the prime p = 5, β1x952 converges to β5
5/5, where x952 = h11b

p−3
20 γ2. This implies

α2β
5
5/5 = α2β1x952 = 0 (cf. [25] 7.5.5 stem 990) because α2β1 = 0.

(2) At the prime p ⩾ 7, we compute Ext2p,qp
3

BP∗BP (BP∗, BP∗) by the SDSS. The E1-term

Es,t,u
1 = Exts,∗BP∗BP (BP∗, BP∗(X))⊗ E[α1]⊗ P [β1]

subject to s+ u = 2p, t = qp3 is the Z/p module generated by

β1h11b
p−3
20 γ2, α1β1b

p−3
20 ηp, α1β

p−1
2

1 h20b
p−5
2

11 b20µ p−3
2 p+p−2.

In any case, we can conclude βp
p/p is divisible by β1. Here we believe that it is β1h11b

p−3
20 γ2

converges to βp
p/p. So we have conjectures for the behavior of βp

pi/pi in general as summarized in

Conjecture C.
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