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Abstract. Let PUn denote the projective unitary group of rank n, and let
BPUn be its classifying space. We show that the p-primary subgroup of

H2p+6(BPUn;Z) is trivial, where p is an odd prime.

1. Introduction

The purpose of this brief paper is to examine the integral cohomology of BPUn.
The notation Un refers to the group of n × n unitary matrices. The projective
unitary group, denoted by PUn, is defined as the quotient group of Un by S1, with
the identification of S1 as the normal subgroup of scalar matrices of Un. Lastly,
BPUn denotes the classifying space of PUn.

The cohomology of BPUn is a fundamental object in algebraic topology with
broad relevance. It plays a significant role in the study of the period-index problem
in algebraic geometry and algebraic topology, as highlighted in works such as [1],
[2], [7], and [8]. Additionally, it is crucial in the exploration of anomalies in particle
physics, as evidenced by works like [4] and [6]. Other related works include [5],
which provides a complete determination of the integral cohomology of PUn.

The cohomology ofBPUn for special values of n has been extensively investigated
by various researchers, including Kameko-Yagita [11], Kono-Mimura [12], Kono-
Yagita [13], Toda [15], and Vavpetič-Viruel [16]. Among these works, the only case
that has been well-understood so far is when n = p, where p is a prime number.

On the other hand, very little is known about the cohomology of BPUn for
arbitrary n, as it is widely regarded as a highly challenging problem. Indeed,
none of the aforementioned works have delved into H∗(BPUn;Z), the ordinary
cohomology of BPUn with coefficients in Z, for non-prime numbers n. However,
a recent breakthrough in this field has been achieved by Gu in [9], where the ring
structure of H∗(BPUn;Z) in dimensions less than or equal to 10 for any value of
n is determined.

Before delving into further computational results, we would like to introduce
some notations that will be utilized throughout this paper.

Notations 1.1. To simplify notations, we let H∗(−) denote the integral cohomology
H∗(−;Z). Given an abelian group A and a prime number p, we let A(p) denote the
localization of A at p, and let pA denote the p-primary subgroup of A. In other
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words, pA is the subgroup of A consisting of all torsion elements whose order is
a power of p. One useful observation is that there exists a canonical isomorphism

pH
∗(−) ∼= p[H

∗(−)(p)]. We will use these two interchangeably. Lastly, note that
when we take tensor products of Z(p)-modules, we do so over Z(p).

In the following discussion, we outline our strategy for studying H∗(BPUn)
for arbitrary n. Firstly, it is worth noting that the torsion-free component of
H∗(BPUn) is already thoroughly understood.

For a fixed positive integer n, there is a short exact sequence of Lie groups

1 → Z/n→ SUn → PSUn ≃ PUn → 1,

which induces a fiber sequence of their classifying spaces

(1.1) B(Z/n) → BSUn → BPUn

Recall the cohomology of BSUn is given by

(1.2) H∗(BSUn) = Z[c2, c3, · · · , cn], |ci| = 2i

We choose a prime number p which does not divide n, then the space B(Z/n) is
p-locally contractible. From (1.1), we get

(1.3) H∗(BPUn;Z(p)) ∼= H∗(BSUn;Z(p))

Since Z(p) is a flat Z-module, H∗(−;Z(p)) ∼= H∗(−)(p). We have an isomorphism
of Z(p)-algebras

(1.4) H∗(BPUn)(p) ∼= H∗(BSUn)(p) = Z(p)[c2, c3, · · · , cn], p ∤ n.

Hence, we can conclude the rank of the torsion-free part of Hs(BPUn) is just the
number of monomials in c2, c3, . . . , cn in dimension s.

The remaining task is to determine the torsion part of H∗(BPUn). Following
the standard approach in algebraic topology, we work with one prime at a time.
Specifically, for arbitrary prime p we study the p-primary subgroup pH

∗(BPUn).
It is important to note that if p ∤ n, then H∗(BPUn)(p) is torsion-free, as shown in
(1.4). Thus, we have

(1.5) pH
∗(BPUn) = p[H

∗(BPUn)(p)] = 0, p ∤ n.

The interesting cases occur only when p | n.
In [10], the work accomplished a comprehensive description of Hs(BPUn;Z)(p)

for s < 2p+5 by proving that pH
s(BPUn) = 0 for s = 2p+3 and s = 2p+4 (when

p is an odd prime). In this paper, we extend the findings in [10] by computing

pH
s(BPUn) for s = 2p+ 6 for all n. Our main theorem is as follows.

Theorem 1. Let p > 2 be a prime number, and n be a positive integer. Then the
p-primary subgroup of the cohomology of BPUn is trivial in dimension 2p+ 6. In
other words, we have pH

2p+6(BPUn) = 0.

Remark 1.2. When p = 2, the explicit computation of the cohomology of BPUn in
dimension 2p+ 6 = 10 can be found in [9], which reveals that

2H
10(BPUn) ∼=

{
Z/2, if n is even,

0, if n is odd.

Thus, it is evident that the result in Theorem 1 does not apply when p = 2.
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The result of pH
2p+5(BPUn) is still an open question. It turns out that the

problem in dimension 2p + 5 is more complex than in other dimensions. We will
say more about this at the end of this paper.

Organization of the paper. In Section 2, we introduce the Serre spectral se-
quence that we use to compute the cohomology of BPUn. Additionally, we recall
some fundamental results regarding the differentials in the spectral sequence. In
Section 3, we provide explicit computations of all relevant differentials and prove
Theorem 1. Furthermore, we will discuss the primary difficulty of computing

pH
2p+5(BPUn).

Acknowledgments. The authors would like to thank Xing Gu for the helpful
discussions which motivated the current project. The authors were supported by
the National Natural Science Foundation of China (No. 12001474; 12261091). The
first and second named authors were also supported by the National Natural Science
Foundation of China (No. 12271183). All authors contribute equally.

2. The spectral sequences

Our tool to compute the cohomology of BPUn is the Serre spectral sequence
UE described in equation (2.2). The same spectral sequence UE was also essential
in the related computations presented in [9, 10]. This section serves to refresh the
basic framework and computational outcomes for UE.

2.1. The Serre spectral sequence UE. The short exact sequence of Lie groups

1 → S1 → Un → PUn → 1

induces a fiber sequence of their classifying spaces

BS1 → BUn → BPUn

Notice that BS1 has the homotopy type of the Eilenberg-Mac Lane space K(Z, 2),
there is an associated fiber sequence

(2.1) U : BUn → BPUn → K(Z, 3)
We will use the Serre spectral sequence associated to (2.1) to compute the co-

homology of BPUn. For notational convenience, we denote this spectral sequence
by UE. The E2 page of UE has the form

(2.2) UEs,t2 = Hs(K(Z, 3);Ht(BUn)) =⇒ Hs+t(BPUn)

To carry out actual computations with this spectral sequence, we need to know
the cohomology of K(Z, 3) and BUn. As we will see in (3.1), since the purpose of
this paper is to study the p-primary subgroup of H∗(BPUn) for a fixed prime p, it
suffices to know the p-local cohomology of K(Z, 3).

We summarize the p-local cohomology of K(Z, 3) in low dimensions as follows.
The original reference is [3], also see [14] for a nice treatment.

Proposition 2.2. Let p > 2 be a prime. In degrees up to 2p+ 7, we have

(2.3) Hs(K(Z, 3))(p) =


Z(p), s = 0, 3,

Z/p, s = 2p+ 2, 2p+ 5,

0, s ≤ 2p+ 7, s ̸= 0, 3, 2p+ 2, 2p+ 5.

where x1, yp,0, x1yp,0 are generators on degree 3, 2p+ 2, 2p+ 5 respectively.
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Remark 2.3. Here the notations for the generators are taken from [9, 2.14].

Also recall

(2.4) H∗(BUn) = Z[c1, c2, . . . , cn], |ci| = 2i

In particular, H∗(BUn) is torsion-free. We have

(2.5) UEs,t2
∼= Hs(K(Z, 3))⊗Ht(BUn)

2.4. The auxiliary spectral sequences TE and KE. Instead of computing the
differentials in UE directly, which is difficult in practice, our strategy is to compare
UE with two auxiliary spectral sequences, which has simpler differential behaviors.
We now introduce the two auxiliary fiber sequences and their associated Serre
spectral sequences.

Let Tn be the maximal torus of Un with the inclusion denoted by

ψ : Tn → Un.

Passing to quotients over S1, we have another inclusion of maximal torus

ψ′ : PTn → PUn.

The quotient map Tn → PTn fits into an exact sequence of Lie groups

1 → S1 → Tn → PTn → 1,

which induces another fiber sequence of their classifying spaces

(2.6) T : BTn → BPTn → K(Z, 3)

T is our first auxiliary fiber sequence.
We also consider the path fibration for K(Z, 3)

(2.7) K : K(Z, 2) ≃ BS1 → ∗ → K(Z, 3)

where ∗ denotes a contractible space. K is our second auxiliary fiber sequence.
These fiber sequences fit into the following homotopy commutative diagram:

(2.8)

K : BS1 ∗ K(Z, 3)

T : BTn BPTn K(Z, 3)

U : BUn BPUn K(Z, 3)

Φ Bφ =

Ψ Bψ Bψ′ =

Here, the map Bφ : BS1 → BTn is induced by the diagonal map φ : S1 → Tn.
We denote the Serre spectral sequences associated to U , T , and K as UE, TE

and KE respectively. We denote their corresponding differentials by Ud
∗,∗
∗ , Td

∗,∗
∗ ,

and Kd
∗,∗
∗ respectively. When the actual meaning is clear from the context, we also

simply denote the differentials by d∗,∗∗ .
In this paper, we compute differentials in UE by comparing them with the dif-

ferentials in TE and KE. This is possible because: (1) we have explicit formulas for
the maps between spectral sequences, and (2) we have a good understanding of the
corresponding differentials in TE and KE.

We first describe the comparison maps between UE, TE and KE.
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Notice that we have

(2.9) H∗(BTn) = Z[v1, v2, . . . , vn], |vi| = 2.

The induced homomorphism between cohomology rings is as follows:

Bφ∗ : H∗(BTn) = Z[v1, v2, · · · , vn] → H∗(BS1) = Z[v], vi 7→ v.

The map Bψ : BTn → BUn induces the injective ring homomorphism

Bψ∗ : H∗(BUn) = Z[c1, · · · , cn] → H∗(BTn) = Z[v1, · · · , vn],
ci 7→ σi(v1, · · · , vn),

(2.10)

where σi(t1, t2, · · · , tn) is the ith elementary symmetric polynomial in variables
t1, t2, · · · , tn:

σ0(t1, t2, · · · , tn) = 1,

σ1(t1, t2, · · · , tn) = t1 + t2 + · · ·+ tn,

σ2(t1, t2, · · · , tn) =
∑
i<j

titj ,

...

σn(t1, t2, · · · , tn) = t1t2 · · · tn.

(2.11)

We also recall some important propositions regarding the higher differentials in
KE and TE. The following result of differentials in KE is the starting point for
relevant computations in TE and UE.

Proposition 2.5. The higher differentials of KE
∗,∗
∗ satisfy

d3(v) = x1,

d2p−1(x1v
lpe−1) = vlp

e−1−(p−1)yp,0, e > 0, gcd(l, p) = 1,

dr(x1) = dr(yp,0) = 0, for all r,

and the Leibniz rule.

Remark 2.6. Proposition 2.5 is a special case of [9, Corollary 2.16]. Note there is
a typo in the original reference, where the condition k ≥ e should be replaced by
e > k.

By comparing with the differentials in KE, one could obtain the following results
on differentials in TE.

Proposition 2.7 ([10], Lemma 3.1). In the spectral sequence TE, we have

Td3,∗2p−1(v
k
nx1) = 0

for 0 ≤ k ≤ p− 2 or k = p, and
Td3,∗2p−1(v

p−1
n x1) = yp,0

Proposition 2.8 ([9], Proposition 3.3). (1) The differential Td0,t3 is given by
the “formal divergence”

∇ =

n∑
i=1

(∂/∂vi) : H
t(BTn;R) → Ht−2(BTn;R),

in such a way that Td0,∗3 = ∇(−) · x1. For any ground ring R = Z or Z/m
for any integer m.
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(2) The spectral sequence degenerates at TE
0,∗
4 . Indeed, we have TE0,∗

∞ = TE0,∗
4 =

Ker Td
0,∗
3 = Z[v1 − vn, · · · , vn−1 − vn].

The following is a useful corollary.

Corollary 2.9. We have

Ud0,∗3 (ck) = ∇(ck)x1 = (n− k + 1)ck−1x1

for 2 ≤ k ≤ n, and
Ud0,∗3 (c1) = nx1

Remark 2.10. Corollary 2.9 first appeared in [9, Corollary 3.4]. Here, we write out
the result for c1 separately since c0 is not defined.

3. Computations in the spectral sequence UE

The purpose of this section is to provide explicit computations using the Serre
spectral sequence UE in order to prove Theorem 1. Noticing

pH
∗(BPUn) ∼= p[H

∗(BPUn)(p)],

in order to study the p-primary subgroup of H∗(BPUn), it suffices to look at the
p-localized spectral sequence, where the E2 page becomes

(3.1) (UEs,t2 )(p) = Hs(K(Z, 3))(p) ⊗Ht(BUn) = Hs(K(Z, 3))⊗Ht(BUn)(p).

Notations 3.1. From Equation (1.5), we see that the result in Theorem 1 is trivial
when p ∤ n. Therefore, to prove the theorem, we only need to consider the case when
p | n. For the remainder of this paper, we will consider a fixed prime p ≥ 3 and
a positive integer n such that p | n. We will use UE, TE, and KE to denote the
corresponding p-localized Serre spectral sequences.

3.2. Nontrivial elements of UE. By Proposition 2.2 and equation (2.4), in the

range s ≤ 2p+ 7, UE
s,t
2 could be nonzero only when s = 0, 3, 2p+ 2, or 2p+ 5, and

t ≥ 0 is even. Therefore, along the line s + t = 2p + 6 of the E∞-page, the only

places where UE
s,t
∞ could possibly be nonzero are UE

0,2p+6
∞ and UE

2p+2,4
∞ . Then the

proof of Theorem 1 boils down to proving the following proposition.

Proposition 3.3. None of the nontrivial elements in UE
2p+2,4
2 could survive to the

E∞-page. In other words, UE
2p+2,4
∞ = 0.

Proof of Theorem 1 assuming Proposition 3.3. Let us first point out that, by the
discussions following Theorem 1, we can feel free to assume p ≥ 3 and p | n.

Now, using the Serre spectral sequence UE, we get a short exact sequence of
Z(p)-modules

(3.2) 0 → UE
2p+2,4

∞ → H2p+6(BPUn)(p) → UE
0,2p+6

∞ → 0

From the isomorphism UEs,t2
∼= Hs(K(Z, 3))⊗Ht(BUn)(p), we get

UE
0,2p+6

2 = H0(K(Z, 3))⊗H2p+6(BUn)(p) ∼= H2p+6(BUn)(p)

is the free Z(p)-module generated by monomials in c1, c2, . . . , cn in dimension 2p+6.

Inspection of degrees shows that UE
0,2p+6
∗ can not receive any nontrivial differen-

tials. Hence UE0,2p+6
∞ ⊂ UE

0,2p+6
2 is a free Z(p)-module. Then the short exact
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sequence (3.2) splits and we get

H2p+6(BPUn)(p) ∼= UE
2p+2,4

∞ ⊕ UE
0,2p+6

∞

This implies

pH
2p+6(BPUn)(p) ⊂ UE

2p+2,4

∞

Now the result follows from Proposition 3.3. □

3.4. Inspection of UE
2p+2,4
∗ . Note the differentials in UE have the form

dr :
UE

s,t

r → UE
s+r,t−r+1

r

Inspection of degrees shows that UE
2p+2,4
∗ can receive only the d2p−1 differential

d2p−1 : UE
3,2p+2

2p−1 → UE
2p+2,4

2p−1

and support the d3 differential

d3 : UE
2p+2,4

3 → UE
2p+5,2

3

By similar arguments, UE
3,2p+2
∗ can receive only the d3 differential and support the

d2p−1 differential.
To simplify the notations, we let

M1 = UE
3,2p+2

2 ,M2 = UE
2p+2,4

2 ,M3 = UE
2p+5,2

2

One simple observation is that, since UE2 is concentrated in even rows, all d2
differentials are trivial. In particular, we also have

M1 = UE
3,2p+2

3 ,M2 = UE
2p+2,4

3 ,M3 = UE
2p+5,2

3

Moreover,

(3.3) UE
2p+2,4

2p−1 = UE
2p+2,4

2p−2 = · · · = UE
2p+2,4

4 = Ker(d3) ⊂ UE
2p+2,4

3 =M2

On the other hand,

(3.4) UE
2p+2,4

∞ = · · · = UE
2p+2,4

2p = UE
2p+2,4

2p−1 /Im(d2p−1)

Again, to simplify the notations, we let δ1 denote the composition

δ1 :M1 = UE3,2p+2
3 → UE3,2p+2

3 / Im d3 = UE3,2p+2
2p−1

d2p−1−−−−→ UE2p+2,4
2p−1 ⊂M2

We let δ2 denote the map

δ2 :M2 = UE2p+2,4
3

d3−→ UE2p+5,2
3 =M3

Before we compute δ1, δ2, let us write down the explicit Z(p)-module structures

of M1, M2, and M3.
Using the isomorphism UEs,t2

∼= Hs(K(Z, 3))⊗Ht(BUn)(p), we get

M1 = H3(K(Z, 3))⊗H2p+2(BUn)(p) ∼= H2p+2(BUn)(p)

is the free Z(p)-module generated by elements of the form cx1 where c is a monomial
in c1, c2, . . . , cn in dimension 2p+ 2.

We also have

M2 = H2p+2(K(Z, 3))⊗H4(BUn)(p) = Z(p){c2yp,0, c21yp,0}/p ∼= Z/p⊕ Z/p
and

M3 = H2p+5(K(Z, 3))⊗H2(BUn)(p) = Z(p){c1x1yp,0}/p ∼= Z/p
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Now, Proposition 3.3 could be proved using the following two lemmas.

Lemma 3.5. As a subgroup of M2, the kernel of δ2 : M2 → M3 is generated by
c21yp,0.

Lemma 3.6. The image of δ1 :M1 →M2 contains the subgroup of M2 generated
by c21yp,0.

Proof of Proposition 3.3 assuming Lemmas 3.5 and 3.6. We have seen from (3.3)

and (3.4) that UE
2p+2,4
2p−1 = Ker(δ2) and UE

2p+2,4
∞ = UE

2p+2,4
2p−1 /Im(δ1). Lemma 3.5

together with 3.6 shows Ker(δ2) ⊂ Im(δ1). Therefore, UE
2p+2,4
∞ = 0.

□

3.7. The proofs of Lemma 3.5 and 3.6. We first study the kernel of δ2 and
prove Lemma 3.5.

Proof of Lemma 3.5. Recall that

M2 = Z(p){c2yp,0, c21yp,0}/p ∼= Z/p⊕ Z/p

M3 = Z(p){c1x1yp,0}/p ∼= Z/p

The map δ2 :M2 d3−→M3 is determined by its behavior on the generators.
By inspection of degrees, we have Ud3(yp,0) = 0. By Corollary 2.9 combined with

the Leibniz rule, we know

δ2(c2yp,0) = d3(c2yp,0) = (n− 1)c1x1yp,0 ̸= 0 ∈M3

δ2(c21yp,0) = d3(c
2
1yp,0) = 2nc1x1yp,0 = 0 ∈M3

Here, recall from Notation 3.1 that we assumed p | n.
Therefore, the kernel of δ2 is generated by c21yp,0. □

Now, we analyze the image of δ1 : M1 → M2 and prove Lemma 3.6. The
strategy is to find an explicit preimage of a nontrivial element in Z/p{c21yp,0}. We
claim that

δ1(cpc1x1) =

(
n− 1

p− 1

)
c21yp,0

Hence cpc1x1 ∈M1 could serve our purpose.

Proof of Lemma 3.6. We compute δ1(cpc1x1) for the element cpc1x1 ∈M1. Instead
of computing this differential directly, we first use the map Ψ∗ : UE → TE of spectral
sequences to consider the image of δ1(cpc1x1) in

TE.

Ψ∗ Ud2p−1(cpc1x1) =
Td2p−1Ψ

∗(cpc1x1)

= Td2p−1[(
∑

n≥i1>i2>···>ip≥1

vi1vi2 · · · vip)(v1 + v2 + · · ·+ vn)x1]
(3.5)

To simplify the computation, we introduce the new elements v′i = vi − vn for
1 ≤ i ≤ n. The advantage is that, by Proposition 2.8(2), the v′i’s are all permanent
cocycles. Now, we use the v′i’s and the summation notation σi’s defined in (2.11)
to rewrite the result in (3.5).
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(
∑

n≥i1>i2>···>ip≥1

vi1vi2 · · · vip)(v1 + v2 + · · ·+ vn)x1

= [
∑

n≥i1>i2>···>ip≥1

(v′i1 + vn)(v
′
i2 + vn) · · · (v′ip + vn)](

n∑
k=1

v′k + nvn)x1

= [
∑

n≥i1>i2>···>ip≥1

p∑
j=0

σj(v
′
i1 , · · · , v

′
ip)v

p−j
n ](

n∑
k=1

v′k + nvn)x1

= [
∑

n≥i1>i2>···>ip≥1

p∑
j=0

σj(v
′
i1 , · · · , v

′
ip)v

p−j
n ][

n∑
k=1

v′k]x1

+n[
∑

n≥i1>i2>···>ip≥1

p∑
j=0

σj(v
′
i1 , · · · , v

′
ip)v

p−j+1
n ]x1

(3.6)

Now, using Proposition 2.7, we can continue the computations in (3.5) and (3.6)

Ψ∗ Ud2p−1(cpc1x1)

= Td2p−1{[
∑

n≥i1>i2>···>ip≥1

p∑
j=0

σj(v
′
i1 , . . . , v

′
ip)v

p−j
n ][

n∑
k=1

v′k]x1}

+Td2p−1{n[
∑

n≥i1>i2>···>ip≥1

p∑
j=0

σj(v
′
i1 , . . . , v

′
ip)v

p−j+1
n ]x1}

= Td2p−1{[
∑

n≥i1>i2>···>ip≥1

σ1(v
′
i1 , . . . , v

′
ip)][

n∑
k=1

v′k]v
p−1
n x1}

+Td2p−1{n[
∑

n≥i1>i2>···>ip≥1

σ2(v
′
i1 , . . . , v

′
ip)v

p−1
n ]x1}

= [
∑

n≥i1>i2>···>ip≥1

σ1(v
′
i1 , . . . , v

′
ip)][

n∑
k=1

v′k]yp,0

+n[
∑

n≥i1>i2>···>ip≥1

σ2(v
′
i1 , . . . , v

′
ip)]yp,0

(3.7)

Here, we are using the fact that v′i’s are permanent cocycles. Noticing that yp,0
is p-torsion and p | n, we can further simplify the result in (3.7)
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Ψ∗ Ud2p−1(cpc1x1)

= [
∑

n≥i1>i2>···>ip≥1

(v′i1 + v′i2 + · · ·+ v′ip)][v
′
1 + v′2 + · · ·+ v′n]yp,0

= [
∑

n≥i1>i2>···>ip≥1

(vi1 + vi2 + · · ·+ vip)][v1 + v2 + · · ·+ vn]yp,0

= [

(
n− 1

p− 1

) n∑
k=1

vk](

n∑
k=1

vk)yp,0

=

(
n− 1

p− 1

)
(

n∑
k=1

vk)
2yp,0

= Ψ∗(

(
n− 1

p− 1

)
c21yp,0)

(3.8)

Recall that we know the comparison map

Ψ∗ : UE
2p+2,4

2 → TE2p+2,4
2

is injective (2.10). We also know UE
2p+2,4
2p−1 is a subgroup of UE

2p+2,4
2 (3.3). Similar

argument shows TE
2p+2,4
2p−1 is a subgroup of TE

2p+2,4
2 . Hence the induced map

Ψ∗ : UE
2p+2,4

2p−1 → TE2p+2,4
2p−1

is also injective. Then (3.8) shows

δ1(cpc1x1) =
Ud2p−1(cpc1x1) =

(
n− 1

p− 1

)
c21yp,0

Note
(
n−1
p−1

)
is coprime to p, this shows the image of δ1 : M1 → M2 contains the

subgroup of M2 generated by c21yp,0.
□

3.8. The computation of pH
2p+5(BPUn). At the conclusion of this paper, we

would like to discuss the current state of the open problem regarding the com-
putation of pH

2p+5(BPUn). The primary challenge in determining this value

is the calculation of UE3,2p+2
2p−2 , which, due to degree considerations, is equiva-

lent to UE3,2p+2
4 . Thus, the problem is reduced to determining the image of

Ud0,2p+4
3 : UE0,2p+4

3 → UE3,2p+2
3 . Here, we have

UE0,2p+4
3 =UE0,2p+4

2 = H0(K(Z, 3))⊗H2p+4(BUn)(p) ∼= H2p+4(BUn)(p),

UE3,2p+2
3 =UE3,2p+2

2 = H3(K(Z, 3))⊗H2p+2(BUn)(p) ∼= H2p+2(BUn)(p).

It is worth noting that the method presented in [10] cannot be used directly to

compute the image of Ud0,2p+4
3 . We will now explain the reasons for this.

Recall that the Z(p)-module UE3,2p
3 is generated freely by elements of the form

cx1, where c is an element of the set S′ defined as S′ := {ci11 c
i2
2 · · · cipp | ik ≥

0,
∑
k kik = p}. In [10], the authors computed Im δ0 := Im Ud0,2p+2

3 : UE0,2p+2
3 →

UE3,2p
3 by introducing a total ordering on S′, which also induces total orderings on

S′x1 and S := S′ − {cp}.
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Let L be the Z(p)-submodule of H2p(BUn)(p) spanned by S. Consider the Z(p)-

linear map τ : L→ UE0,2p+2
3 = H2p+2(BUn)(p) defined by

τ(ci11 c
i2
2 · · · cikk ) = ci11 c

i2
2 · · · cik−1

k−1 c
ik−1
k ck+1.

For any element c := ci11 · · · cikk ∈ S, we have

δ0τ(c) ≡ (n− k)cx1 + higher order terms mod p.

Therefore, the associated coefficient matrix takes the form

A ≡



λ1 ∗ · · · ∗

0 λ2 ∗
...

0 0
. . . ∗

0 · · · 0 λN
0 0 · · · 0

 (mod p),

where the λi’s are of the form n− k for k < p, and hence invertible in Z(p). Based

on this, we can determine Im δ0 = Im Ud0,2p+2
3 .

Now, we will attempt to use similar methods to calculate Im Ud0,2p+4
3 . In this

case, the set S′ becomes

S′ = {ci11 c
i2
2 · · · cip+1

p+1 | ik ≥ 0,
∑
k

kik = p+ 1}.

Then, in the corresponding coefficient matrix A, the λi’s are of the form n − k
for k < p + 1, which is no longer invertible in Z(p) if k = p. Therefore, similar

computation strategies can not be directly applied to compute pH
2p+5(BPUn).

References

[1] Benjamin Antieau and Ben Williams. The period-index problem for twisted topological K-

theory. Geometry & Topology, 18(2):1115–1148, 2014.
[2] Benjamin Antieau and Ben Williams. The topological period–index problem over 6-

complexes. Journal of Topology, 7(3):617–640, 2014.
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[6] Iñaki Garćıa-Etxebarria and Miguel Montero. Dai-Freed anomalies in particle physics. Journal
of High Energy Physics, 2019(8):3, 2019.

[7] Xing Gu. The topological period–index problem over 8-complexes, I. Journal of Topology,

12(4):1368–1395, 2019.
[8] Xing Gu. The topological period-index problem over 8-complexes, II. Proceedings of the

American Mathematical Society, 148:4541–4545, 2020.
[9] Xing Gu. On the cohomology of the classifying spaces of projective unitary groups. Journal

of Topology and Analysis, 13(02):535–573, 2021.

[10] Xing Gu, Yu Zhang, Zhilei Zhang, and Linan Zhong. The p-primary subgroups of the coho-
mology of BPUn in dimensions less than 2p+5. Proc. Amer. Math. Soc., 150(9):4099–4111,

2022.

[11] Masaki Kameko and Nobuaki Yagita. The Brown-Peterson cohomology of the classifying
spaces of the projective unitary groups PU(p) and exceptional Lie groups. Transactions of

the American Mathematical Society, 360(5):2265–2284, 2008.



12 Y. ZHANG, Z. ZHANG, AND L. ZHONG

[12] Akira Kono and Mamoru Mimura. On the cohomology of the classifying spaces of PSU(4n+2)

and PO(4n+2). Publications of the Research Institute for Mathematical Sciences, 10(3):691–

720, 1975.
[13] Akira Kono and Nobuaki Yagita. Brown-Peterson and ordinary cohomology theories of clas-

sifying spaces for compact Lie groups. Trans. Amer. Math. Soc., 339(2):781–798, 1993.

[14] Hirotaka Tamanoi. Q-subalgebras, Milnor basis, and cohomology of Eilenberg-MacLane
spaces. Journal of Pure and Applied Algebra, 137(2):153–198, 1999.

[15] Hiroshi Toda et al. Cohomology of classifying spaces. In Homotopy theory and related topics,

pages 75–108. Mathematical Society of Japan, 1987.
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